[1]李龙飞,刘 侃,李 娟,等.一种基于扰动观测器的永磁同步伺服电机复合滑模控制方法[J].控制与信息技术,2019,(06):43-47.[doi:10.13889/j.issn.2096-5427.2019.06.008]
 LI Longfei,LIU Kan,LI Juan,et al.A Composite Sliding Mode Control Method for the Servo PMSM Based onDisturbance Observer[J].High Power Converter Technology,2019,(06):43-47.[doi:10.13889/j.issn.2096-5427.2019.06.008]
点击复制

一种基于扰动观测器的永磁同步伺服电机复合滑模控制方法()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年06期
页码:
43-47
栏目:
电力与传动控制
出版日期:
2019-12-05

文章信息/Info

Title:
A Composite Sliding Mode Control Method for the Servo PMSM Based onDisturbance Observer
文章编号:
2096-5427(2019)06-0043-05
作者:
李龙飞刘 侃李 娟杨士洁
(湖南大学机械与运载工程学院, 湖南 长沙 410012)
Author(s):
LI Longfei LIU Kan LI Juan YANG Shijie
( College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410012, China )
关键词:
永磁同步伺服电机复合滑模控制非线性扰动观测器鲁棒性
Keywords:
servo permanent magnet synchronous motor composite sliding mode control(CSMC) nonlinear disturbance observer(NDOB) robustness
分类号:
TM341
DOI:
10.13889/j.issn.2096-5427.2019.06.008
文献标志码:
A
摘要:
为了提高永磁同步伺服电机的鲁棒性和位置控制精度,文章设计了一种结合了位置环和速度环的复合滑模控制方法,并将之用于具有未知扰动的永磁同步伺服驱动系统。该复合滑模控制器具有位置控制模式和速度控制模式,可以根据运行状况自适应地调整控制方式,从而提高伺服控制的位置精度和响应速度;此外,引入一种非线性观测器用于估计未知的外部扰动并用于补偿控制,其不但可以提高系统的抗干扰能力,还可以减小因滑模控制带来的系统抖振现象。该方法的有效性和鲁棒性在一台750 W的小功率PMSM系统上得到了验证。
Abstract:
In order to improve the robustness and position control accuracy of a servo permanent magnet synchronous motor(PMSM), it designed a composite sliding mode control method combining position control loop and speed control loop, which is used for permanent magnet synchronous servo drive system with unknown disturbance. The composite sliding mode controller has a position control mode and a speed control mode which can adaptively adjust the control mode according to the operating conditions to improve the positional accuracy and the responding speed of the servo control. In addition, a nonlinear observer is introduced to estimate the unknown external disturbance and used for compensation control, which not only improves the anti-interference ability of the system, but also reduces the system chattering caused by the sliding mode control. The effectiveness and robustness of the proposed method is verified by a 750 W low-power PMSM system.

参考文献/References:

[1] ERROUISSI R, AL-DURRA A, MUYEEN S M. Experimental Validation of a Novel PI Speed Controller for AC Motor Drives With Improved Transient Performances[J]. IEEE Transactions on Control Systems Technology, 2018, 26(4): 1414-1421.

[2] LARA J, XU J, CHANDRA A. Effects of Rotor Position Error in the Performance of Field Oriented Controlled PMSM Drives for Electric Vehicle Traction Applications[J]. IEEE Transactions on Industrial Electronics, 2016, 63(8): 4738-4751.
[3] GAO W B, HUNG J C. Variable Structure Control of Nonlinear Systems: A New Approach[J]. IEEE Transactions on Industrial Electronics, 1993, 40(1):45-55.
[4] NGUYEN A T, RAFAQ M S, CHOI H, et al. A Model Reference Adaptive Control-Based Speed Controller for a Surface-Mounted Permanent Magnet Synchronous Motor Drive[J]. IEEE Transactions on Industrial Electronics, 2018, 65(12): 9399-9409.
[5] JUNG J W , LEU V Q , DO T D , et al. Adaptive PID Speed Control Design for Permanent Magnet Synchronous Motor Drives[J]. IEEE Transactions on Power Electronics, 2015, 30(2):900-908.
[6] ZHANG Y C, XU D L, LIU J L, et al. Performance Improvement of Model Predictive Current Control of Permanent Magnet Synchronous Motor Drives[J]. IEEE Transactions on Industry Applications, 2017, 53(4): 3683-3695.
[7] SU Y X, ZHENG C H, DUAN B Y. Automatic disturbances rejection controller for precise motion control of permanent-magnet synchronous motors[J]. IEEE Transactions on Industrial Electronics, 2005, 52(3): 814-823.
[8] KIM S K, LEE J S, LEE K B. Offset-Free Robust Adaptive Back-Stepping Speed Control for Uncertain Permanent Magnet Synchronous Motor[J]. IEEE Transactions on Power Electronics, 2016, 31(10): 7065-7076.
[9] SUN X F, YU H S, YU J P, et al. Design and implementation of a novel adaptive backstepping control scheme for a PMSM with unknown load torque[J]. IET Electric Power Applications, 2019, 13(4):445-455.
[10] ANGUE MINTSA H, VENUGOPAL R, KENNE J, et al. Feedback Linearization-Based Position Control of an Electrohydraulic Servo System With Supply Pressure Uncertainty [J]. IEEE Transactions on Control Systems Technology, 2012, 20(4): 1092-1099.
[11] YANG S M, LIN K W. Automatic Control Loop Tuning for Permanent Magnet AC Servo Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2016, 63(3): 1499-1506.
[12] LIU K , HOU C , HUA W . A Novel Inertia Identification Method and Its Application in PI Controllers of PMSM Drives[J]. IEEE Access, 2019, 7: 13445-13454.
[13] LIU K , ZHU Z . Fast Determination of Moment of Inertia of Permanent Magnet Synchronous Machine Drives for Design of Speed Loop Regulator[J]. IEEE Transactions on Control Systems Technology, 2017, 25(5): 1816-1824.
[14] LI S H, LIU Z G. Adaptive Speed Control for Permanent-Magnet Synchronous Motor System With Variations of Load Inertia[J]. IEEE Transactions on Industrial Electronics, 2009, 56(8):3050-3059.
[15] SOLSONA J, VALLA M I , MURAVCHIK C . Nonlinear control of a permanent magnet synchronous motor with disturbance torque estimation[J]. IEEE Transactions on Energy Conversion, 2000, 15(2):163-168.
[16] TAMI R, BOUTAT D, ZHENG G, et al. Rotor speed, load torque and parameters estimations of a permanent magnet synchronous motor using extended observer forms[J]. IET Control Theory & Applications, 2017, 11(9):1485-1492.
[17] MOHAMED Y A I. Design and implementation of a robust current-control scheme for a PMSM vector drive with a simple adaptive disturbance observer[J]. IEEE Transactions on Industrial Electronics, 2007, 54(4): 1981-1988.
[18] YANG J, CHEN W H, LI S, et al. Disturbance/Uncertainty Estimation and Attenuation Techniques in PMSM Drives–A Survey[J]. IEEE Transactions on Industrial Electronics, 2017, 64(4): 3273-3285.
[19] YANG J, CHEN W H, LI S. Non-linear disturbance observer-based robust control for systems with mismatched disturbances/uncertainties[J]. IET Control Theory & Applications, 2011, 5(18): 2053-2062.

备注/Memo

备注/Memo:
收稿日期:2019-08-05
作者简介:李龙飞(1996—),男,在读硕士研究生,主要研究方向为精密伺服电机驱动算法设计;刘侃(1982—),男,教授、博导,主要研究方向为轨道交通、电动/混动汽车的永磁牵引电机关键驱动控制技术。
基金项目:国家自然科学基金(51877075);汽车车身先进设计制造国家重点实验室(71865008);省部共建电工装备可靠性与智能化国家重点实验室(EERIKF2018007)
更新日期/Last Update: 2019-12-25