[1]齐 战,李茂军,肖雨荷,等.基于改进状态空间模型遗传算法的分数阶PID控制器优化设计[J].控制与信息技术,2019,(06):18-23.[doi:10.13889/j.issn.2096-5427.2019.06.004]
 QI Zhan,LI Maojun,XIAO Yuhe,et al.Optimum Design of Fractional-order PID Controllerwith a Modified Genetic Algorithm Based on the State-space[J].High Power Converter Technology,2019,(06):18-23.[doi:10.13889/j.issn.2096-5427.2019.06.004]
点击复制

基于改进状态空间模型遗传算法的分数阶PID控制器优化设计()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年06期
页码:
18-23
栏目:
控制理论与应用
出版日期:
2019-12-05

文章信息/Info

Title:
Optimum Design of Fractional-order PID Controllerwith a Modified Genetic Algorithm Based on the State-space
文章编号:
2096-5427(2019)06-0018-06
作者:
齐 战 李茂军 肖雨荷 刘 芾
(长沙理工大学电气与信息工程学院,湖南 长沙 410000)
Author(s):
QI Zhan LI Maojun XIAO Yuhe LIU Fu
( College of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha, Hunan 410000, China )
关键词:
状态空间模型遗传算法分数阶PID控制器参数整定伺服控制
Keywords:
GABS(genetic algorithm based on the state-space) FOPID(fractional-order PID)controller parameter tuning servo control
分类号:
TP273
DOI:
10.13889/j.issn.2096-5427.2019.06.004
文献标志码:
A
摘要:
针对分数阶PID控制器参数较多且整定方法计算繁琐的问题,文章提出一种改进的状态空间模型遗传算法以进行分数阶PID控制器的参数整定。其融入一种特殊变异机制,增强了原算法的稳定性及全局收敛性,以便实现全局搜索,得到最优参数,完成最优分数阶PID控制器设计。将优化的分数阶PID控制器应用到伺服控制系统模型中,通过仿真对比分析发现,相比于状态空间遗传算法和遗传算法,该遗传算法的整定结果更好,系统时域响应性能、抗干扰性和鲁棒性更优。
Abstract:
Fractional-order PID (FOPID) controller has so many parameters that the traditional tuning methods are difficult to achieve. So it presented a modified genetic algorithm based on the state-space (MGABS) to optimize the parameters of the FOPID controller. MGABS adds a special mutation mechanism to enhance the stability and global convergence of the original algorithm for global searching, which facilitates the design of the optimal FOPID controller. For a FOPID controller of a typical servo control system, the simulation results indicated that the performance of the system with MGABS method is improved in comparison with the one with genetic algorithm based on the state-space and the one with genetic algorithm, and the MGABS method in designing the FOPID controller yieldes improved solutions in terms of time domain response, anti-disturbance capacity and robustness.

参考文献/References:

[1] PODLUBNY I. Fractional-order systems and PIλDμ controllers[J]. IEEE Transactions on Automatic Control, 1999, 44(1): 208-214.

[2] PRITESH S , SUDHIR A , KULKARNI A J . Design of a fractional PIλDμ controller using the cohort intelligence method[J]. Frontiers of Information Technology & Electronic Engineering, 2018, 19(3): 437-445.
[3] PETRAS I. The fractional-order controllers: Methods for their synthesis and application [J].Electrical Engineering, 1999, 50(9-10): 284-288.
[4] MONJE C A, CALDERON A J, VINAGRE B M, et al. On fractional PIλ controllers: some tuning rules for robustness to plant uncertainties[J]. Nonlilnear Dynamics, 2004, 38(1-4): 369-381.
[5] RADMEHR N, KHARRATI H, BAYATI N. Optimized design of fractional-order PID controllers for autonomous underwater vehicle using genetic algorithm[C]// 2015 9th International Conference on Electrical and Electronics Engineering (ELECO). Bursa: IEEE, 2015: 729-733.
[6] CASTRO F A D, BERNARDES N D, CUADROS M A D S L, et al. Comparison of fractional and integer PID controllers tuned by genetic algorithm[C]// 2016 12th IEEE International Conference on Industry Applications (INDUSCON). Curitiba: IEEE, 2016: 1-7.
[7] ZAMANI M , KARIMI-GHARTEMANI M , SADATI N , et al. Design of a fractional order PID controller for an AVR using particle swarm optimization[J]. Control Engineering Practice, 2009, 17(12):1380-1387.
[8] AGHABABA M P. Optimal design of fractional -order PID controller for five bar linkage robot using a new particle swarm optimization algorithm[J]. Soft Computing, 2015, 20(10):1- 13.
[9] 鲍雪, 王大志, 杨永生. 基于CAPSO算法的修正炮弹分数阶控制器设计[J]. 仪器仪表学报, 2015, 36(11):2556-2562.
[10] 张欣, 仲崇权. 基于量子粒子群优化设计的分数阶PIλDμ控制器[J]. 控制工程, 2018, 25(3): 493-498.
[11] 王淼. 分数阶控制器设计与仿真研究[D]. 北京:北京交通大学, 2014.
[12] 李茂军, 刘黄, 李奇,等. 基于状态空间模型的实数编码遗传算法[J]. 山东科技大学学报(自然科学版), 2015, 34(3):1-7.
[13] XUE D Y. Fractional-order control systems: fundamentals and numerical implementtations [M]. Berlin: Walter de Gruyter GmbH & Co KG, 2017.
[14] 薛定宇, 赵春娜. 分数阶系统的分数阶PID控制器设计[J]. 控制理论与应用, 2007, 24(5):771-776.
[15] 高嵩, 王磊, 陈超波, 等. 一种改进粒子群优化的分数阶PID参数整定[J]. 控制工程, 2017,24(10):44-49.
[16] 陈明俊,李长虹,杨燕. 武器伺服系统工程实践[M]. 北京:国防工业出版社,2013.
[17] XUE D Y, CHEN Y Q. Modeling, analysis and design of control systems in MATLAB and Simulink[M]. Singapore: World Scientific Publishing, 2015.
[18] 金滔, 董秀成, 李亦宁,等. 改进的粒子群优化算法优化分数阶PID控制器参数[J]. 计算机应用, 2019, 39(3):796-801.
[19] 郑恩让, 姜苏英. 基于改进粒子群优化算法的分数阶PID控制[J]. 控制工程, 2017, 24(10):116-121.
[20] SUN Y B,YANG L,WANG C Y. Time-Varying Sliding Mode Control for Linear Motor Servo System[J]. Advanced Materials Research, 2011, 383-390:1267-1272.

备注/Memo

备注/Memo:
收稿日期:2019-09-23
作者简介:齐战(1995—),男,在读硕士研究生,研究方向为智能控制与智能计算;李茂军(1964—),男,教授,博士,研究方向为智能控制与智能计算、电力系统自动化。
更新日期/Last Update: 2019-12-25