[1]熊群芳,林 军,岳 伟,等. 基于深度学习的驾驶员打电话行为检测方法[J].控制与信息技术,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.400]
 XIONG Qunfang,LIN Jun,YUE Wei,et al. A Driver Calling Behavior Detection Method Based on Deep Learning[J].High Power Converter Technology,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.400]
点击复制

 基于深度学习的驾驶员打电话行为检测方法()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年06期
页码:
1
栏目:
出版日期:
2019-12-05

文章信息/Info

Title:
 A Driver Calling Behavior Detection Method Based on Deep Learning
作者:
 熊群芳1林 军1岳 伟1刘世望2罗 潇1丁 驰1
(1.中车株洲电力机车研究所有限公司,湖南 株洲 412001;2. 西南交通大学 电气工程学院,四川 成都 611756)
Author(s):
 XIONG Qunfang1 LIN Jun1 YUE Wei1 LIU Shiwang2 LUO Xiao1 DING Chi1
 ( 1.CRRC Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China;2.School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 611756, China )
关键词:
 深度学习卷积神经网络人脸检测驾驶行为打电话行为检测
Keywords:
 deep learning convolutional neural network face detection driving behavior cell phone usage detection
分类号:
TP399
DOI:
10.13889/j.issn.2096-5427.2019.06.400
文献标志码:
A
摘要:
 为避免驾驶员因使用手机而无法对突发事故做出及时处理现象的发生,通过视频分析技术对驾驶员行为进行实时监控变得尤为重要。针对目前已有检测方法因存在异物遮掩、图像旋转、光照变化及难以提取图像深层特征等缺点而导致检测精度较低的问题,文章提出了一种基于深度学习的驾驶员打电话行为检测方法:首先采用渐进校准网络(progressive calibration networks,PCN) 算法实现人脸检测及实时跟踪,从而确定打电话检测候选区域;然后采用基于卷积神经网络算法在候选区域实现驾驶员打电话行为检测。实际场景驾驶检测结果表明,本文所提方法不仅鲁棒性高,而且精度达到96.56%,误检率为1.52%,处理速度达到25 帧/s,可以有效地进行驾驶员打电话行为检查监测。
Abstract:
 In order to prevent the driver frombeing distracted by the cell phone call, real-time monitoring of drivers’ behavior through
video analysis is especially important. At present, driver’s calling behavior detection methods are prone to object occlusion, image rotation, illumination change and are difficult to extract deep features of the image, which degrader the detection accuracy. This paper proposes a driver’s cell phone calling behavior detection algorithm based on deep learning. The proposed algorithm comprises two steps, Firstly, face detection and face tracking is supported by PCN (progressive calibration networks) to determine the calling detection area. Secondly, the driver’s cell phone calling behavior detection method based on convolution neural network is used to detect the cell phone in the candidate area. Our experiments show that the accuracy of the propose algorithm reaches 96.56%, the false positive rate reaches 1.52%, and the processing speed reaches 25 frames per second. It can effectively detect the driver’s cell phone usage.

参考文献/References:

 [1] World Health Organization. Global status report on road safety[R].
Geneva:WHO, 2018[2019-09-15]. http://www.who.int/violence_
injury_prevention/road_safety_status/2018/en/.
[2] H K M B, SKOV M B, THOMASSEN N G. You can touch, but you
can’t look: interacting with in-vehicle systems [C]//Conference
on Human Factors in Computing Systems. Florence, Italy: CHI,
2008:1139-1148.
[3] MOURANT R R, ROCKWELL T H. Strategies of visual search by
novice and experimental drivers[J]. Human Factors, 1972, 14(4):325-335.
[4] RODRIGUEZ-ASCARIZ J M, BOQUETE L , CANTOS J, et al.
Automatic system for detecting driver use of mobile phones[J].
Transportation Research Part C Emerging Technologies, 2011, 19(4):
673-681.
[5] YANG J, SIDHOM S, CHANDRASEKARAN G, et al. Detecting
Driver Phone Use Leveraging Car Speakers[C]// Proceedings of
the 17th annual international conference on Mobile computing and
networking. Las Vegas, Nevada, USA: MOBICOM, 2011: 97-108.
[6] 魏民国. 基于机器视觉的驾驶人使用手持电话行为检测方法[D].
北京: 清华大学,2014.
[7] 王丹. 基于机器视觉的驾驶员打电话行为检测[D]. 北京:北京理
工大学,2015.
[8] 王尽如. 基于半监督支持向量机的驾驶员打电话行为检测[D]. 长
沙:湖南大学, 2018.
[9] SHI X, SHAN S, KAN M, et al. Real-Time Rotation-Invariant Face
Detection with Progressive Calibration Networks [EB/OL].(2018-04-
17)[2019-09-15].https://arxiv.org/pdf/1804.06039.pdf.
[10] LI H, LIN Z, SHEN X, et al. A convolutional neural network cascade
for face detection[C]// 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR). Boston, MA, USA :IEEE, 2015.
[11] FARFADE S S, SABERIAN M , LI L J . Multi-view Face Detection
Using Deep ConvolutionalNeural Networks[C]//Proceedings of the
5th ACM on International Conference on Multimedia Retrieval.
Shanghai, China:ACM, 2015.
[12] RANJAN R, PATEL V M, CHELLAPPA R. HyperFace: A Deep
Multi-task Learning Framework for Face Detection, Landmark
Localization, Pose Estimation, and Gender Recognition[J]. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2017,
41(1): 121 - 135.
[13] QIN H, YAN J, LI X, et al. Joint Training of Cascaded CNN for
Face Detection[C]// 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Las Vegas, NV, USA: IEEE, 2016.
[14] ZHANG K , ZHANG Z, LI Z, et al. Joint Face Detection and
Alignment Using Multitask Cascaded Convolutional Networks[J].
IEEE Signal Processing Letters, 2016, 23(10): 1499-1503.
[15] REN S, HE K, GIRSHICK R, et al. Faster R-CNN: towards real-time
object detection with region proposal networks[J]. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2015, 39(6):1137-
1149.
[16] HU P, RAMANAN D. Finding Tiny Faces[C]// 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).
Honolulu, HI, USA: IEEE, 2017.
[17] HAO Z, YU L, QIN H, et al. Scale-Aware Face Detection[EB/OL].
(2017-06-29)[2019-09-15].https://arxiv.org/pdf/1706.09876.pdf.
[18] YANG S, XIONG Y , LOY C C , et al. Face Detection through Scale-
Friendly Deep Convolutional Networks[EB/OL]. (2017-06-09)[2019-
09-15].https://arxiv.org/pdf/1706.02863.pdf.
[19] NAJIBI M, SAMANGOUEI P, CHELLAPPA R, et al. SSH: Single
Stage Headless Face Detector[C]// IEEE International Conference on
Computer Vision (ICCV),2017:4875-4884.
[20] ZHANG S, ZHU X, LEI Z, et al. S^3FD: Single Shot Scale-Invariant
Face Detector[C]//2017 IEEE International Conference on Computer
Vision (ICCV). Venice, Italy: IEEE Computer Society, 2017:192-
201.
[21] REDMON J , FARHADI A. YOLOV3: An I n c r e m e n t a l
Improvement[EB/OL]. (2018-04-08)[2019-09-15].https://arxiv.org/
pdf/1804.02767.pdf.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(06):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术,2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术,2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(06):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(06):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术,2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(06):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(06):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术,2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(06):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术,2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(06):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
[11]熊群芳,林 军,岳 伟,等. 基于深度学习的疲劳驾驶状态检测方法[J].控制与信息技术,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.400]
 XIONG Qunfang,LIN Jun,YUE Wei,et al. A Method of Fatigue Driving State Detection Based on Deep Learning[J].High Power Converter Technology,2018,(06):1.[doi:10.13889/j.issn.2096-5427.2018.06.400]
[12]高 群,朱 均,王芊芊,等. 基于鱼眼图像的目标检测算法研究[J].控制与信息技术,2019,(03):1.[doi:10.13889/j.issn.2096-5427.2019.03.100]
 GAO Qun,ZHU Jun,WANG Qianqian,et al.Research on the Object Detection Algorithm Based on Fisheye Image[J].High Power Converter Technology,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.03.100]
[13]齐 航,袁健全,李 磊,等. 基于深度学习的红外烟幕区域分割技术[J].控制与信息技术,2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.04.400]
 QI Hang,YUAN Jianquan,LI Lei,et al. A Method of Smoke Area Segmentation for Infrared Images Based on Deep Learning[J].High Power Converter Technology,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.04.400]
[14]王章骏,许 平,王春彭,等. 有限元位移解的生成式对抗网络替代方法[J].控制与信息技术,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.300]
 WANG Zhangjun,XU Ping,WANG Chunpeng,et al. A Generative Adversarial Network Approach to Estimate Finite Element Displacement[J].High Power Converter Technology,2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.300]

备注/Memo

备注/Memo:
 收稿日期:2019-09-18
作者简介:熊群芳(1990—),女,硕士研究生,研究方向为图像处理。
基金项目:国家重点研发计划(2018YFB1201600)
更新日期/Last Update: 2019-12-03