[1]黄挚雄,张翼天,李志勇,等.磁耦合谐振系统整流负荷响应特性研究[J].控制与信息技术(原大功率变流技术),2019,(05):21-26.[doi:10.13889/j.issn.2096-5427.2019.05.005]
 HUANG Zhixiong,ZHANG Yitian,LI Zhiyong,et al.Research on Rectifier Load Response Characteristics of MCR-WPT System[J].High Power Converter Technology,2019,(05):21-26.[doi:10.13889/j.issn.2096-5427.2019.05.005]
点击复制

磁耦合谐振系统整流负荷响应特性研究()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年05期
页码:
21-26
栏目:
控制理论与应用
出版日期:
2019-10-05

文章信息/Info

Title:
Research on Rectifier Load Response Characteristics of MCR-WPT System
文章编号:
2096-5427(2019)05-0021-06
作者:
黄挚雄张翼天李志勇陈有根温大钊
(中南大学自动化学院,湖南 长沙 410075)
Author(s):
HUANG Zhixiong ZHANG Yitian LI Zhiyong CHEN Yougen WEN Dazhao
( School of Automation, Central South University, Changsha, Hunan 410075, China )
关键词:
无线电能传输 磁耦合谐振 整流负荷 最大功率点
Keywords:
wireless power transmission magnetic coupling resonance load with rectification maximum power point
分类号:
TM46
DOI:
10.13889/j.issn.2096-5427.2019.05.005
文献标志码:
A
摘要:
磁耦合谐振无线电能传输系统接收功率与负荷变化的关系受到广泛关注,其与拓扑结构和耦合系数强相关。针对带整流负荷的磁耦合谐振系统,文章通过建立4种拓扑结构的等效电路模型得出接收功率的表达式;进一步研究发现功率的负荷响应特性受到拓扑结构与耦合系数的影响显著,其中串串(series-series)拓扑和并并(parallel-parallel)拓扑的最大功率点偏向高阻抗区域,串并(series-parallel)拓扑和并串(parallel-series)拓扑的最大功率点更偏向低阻抗区域。最后,基于仿真与实验验证的各拓扑结构负荷响应特性,为磁耦合谐振系统在不同应用环境下如何选择拓扑才能实现最大功率输电提出了参考建议。
Abstract:
The relationship between received power and load variation in magnetic coupling resonant wireless power transmission (MCR-WPT) system has received wide attention, and it is strongly correlated with the topology and coupling coefficient. This paper conducts research on the MCR-WPT system with rectifier circuit, and the expression of received power was obtained by establishing the equivalent circuit model of four topologies. Further analysis shows that the load response characteristics of power are significantly affected by the topological structure and coupling coefficient. The maximum power points of the series-series (SS) topology and the parallel-parallel (PP) topology are slightly biased toward the high impedance region. The maximum power point of the series-parallel (SP) topology and the parallel-series (PS) topology are biased toward the low impedance region. Finally, based on the load response characteristics of each topological structure is verified the simulation analysis and experiments, reference suggestions are provided on how the MCR-WPT system should select the topology in different application environments to achieve maximum power transmission.

参考文献/References:

[1] KURS A, KARALIS A, MOFFATT R, et al. Wireless Power Transfer via Strongly Coupled Magnetic Resonances[J]. Science, 2007, 317(5834):83-86.

[2] 范兴明, 莫小勇, 张鑫. 无线电能传输技术的研究现状与应用[J]. 中国电机工程学报, 2015, 35(10):2584-2600.
[3] 黄学良, 谭林林, 陈中, 等. 无线电能传输技术研究与应用综述[J]. 电工技术学报, 2013, 28(10):1-11.
[4] 张献, 杨庆新, 崔玉龙,等. 大功率无线电能传输系统能量发射线圈设计、优化与验证[J]. 电工技术学报, 2013, 28(10):12-18.
[5] 杜秀, 王健强, 程鹏天. 磁耦合无线能量传输中耦合模理论和电路理论的对比分析[J]. 电工技术学报, 2013, 28(增刊2):7-12.
[6] 黄学良, 曹伟杰, 周亚龙, 等. 磁耦合谐振系统中的两种模型对比探究[J]. 电工技术学报, 2013, 28(增刊2):13-17.
[7] 刘志峰, 刘瑞, 黄海鸿, 等. 磁耦合谐振串串式无线电能传输研究[J]. 现代电子技术, 2015, 38(17):127-132.
[8] CHO S Y, LEE I O, MOON S C, et al. Series-series compensated wireless power transfer at two different resonant frequencies[C]// Ecce Asia Downunder. Melbourne, Australia: IEEE, 2013.
[9] 黄学良, 吉青晶, 谭林林,等. 磁耦合谐振式无线电能传输系统串并式模型研究[J]. 电工技术学报, 2013, 28(3):171-176.
[10] WANG S, CHEN J, HU Z, et al. Study on series-parallel mixed-resonance model of wireless power transfer via magnetic resonance coupling[C]// Progress in Electromagnetic Research Symposium. Shanghai, China: IEEE, 2016.
[11] 潘超, 刘凯旭, 郑永健. 电磁耦合谐振式无线电能传输系统性能研究[J]. 电力电子技术, 2017(2):113-115.
[12] 田子建, 杜欣欣, 樊京, 等. 磁耦合谐振无线输电系统不同拓扑结构的分析[J]. 电气工程学报, 2015, 10(6):47-57.
[13] ZHANG Y M, LU T, ZHAO Z M, et al. Impact of source internal resistance on efficiency of four resonant wireless power transfer topologies[C]//17th International Conference on Electrical Machines and Systems (ICEMS). Hangzhou, China: IEEE, 2014.
[14] SONG K, LI Z J, DU Z J, et al. Design for constant output voltage and current controllability of primary side controlled wireless power transfer system[C]//2017 IEEE PELS Workshop on Emerging Technologies: Wireless Power Transfer (WoW). Chongqing, China: IEEE, 2017.
[15] ERICKSON R W, MAKSIMOVIC D. Fundamentals of Power Electronics[M]. 2nd ed. Colorado: Kluwer Academic, 2001.

备注/Memo

备注/Memo:
收稿日期:2019-03-12
作者简介:黄挚雄(1960—),男,博士,教授,主要从事新能源发电领域的研究。
基金项目:中南大学国家级米塔尔创新项目(201810533267)
更新日期/Last Update: 2019-10-23