[1]杨? 帆,徐 彪.多障碍物环境下智能车辆局部路径规划方法[J].控制与信息技术(原大功率变流技术),2019,(05):1-6.[doi:10.13889/j.issn.2096-5427.2019.05.200]
 YANG Fan,XU Biao.A Local Path Planning Method for Intelligent Vehicle in Multi-obstacle Environment[J].High Power Converter Technology,2019,(05):1-6.[doi:10.13889/j.issn.2096-5427.2019.05.200]
点击复制

多障碍物环境下智能车辆局部路径规划方法()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年05期
页码:
1-6
栏目:
控制理论与应用
出版日期:
2019-10-05

文章信息/Info

Title:
A Local Path Planning Method for Intelligent Vehicle in Multi-obstacle Environment
文章编号:
2096-5427(2019)05-0001-06
作者:
杨? 帆徐 彪
(湖南大学 机械与运载工程学院,湖南 长沙 410082)
Author(s):
YANG Fan XU Biao
( College of Mechanical and Vehicle Engineering, Hunan University, Changsha, Hunan 410082, China )
关键词:
局部路径规划 静态障碍物 结构化道路 A* 算法 离散方法
Keywords:
local path planning static obstacle structured road A* algorithm discrete method
分类号:
TP242
DOI:
10.13889/j.issn.2096-5427.2019.05.200
文献标志码:
A
摘要:
在多障碍物的结构化道路场景下,智能车辆需要在满足道路边界约束的同时实现连续避障。在给定全局参考路径的前提下,针对智能车辆在多障碍物环境下的局部路径规划问题,文章通过坐标系转换,将规划问题转换至曲线坐标系下进行;建立了相邻障碍物聚合模型,以简化障碍物环境;采用离散方法生成障碍物路段的离散路径,并使用改进的 A* 算法搜索得到连续避障的离散路径;最后通过三次样条插值曲线拟合离散路径,得到可连续避障的连续路径。仿真结果表明,在多障碍物环境下,该方法能有效生成无碰撞的连续避障局部路径,同时具有较好的平顺性。
Abstract:
In the structured road scene with multiple obstacles, intelligent vehicles need to meet the road boundary constraints and ensure continuous obstacle avoidance at the same time. Given the premise of global reference path, in view of the intelligent vehicle in the local path planning problem of obstacle environment, this paper used a discrete method to generate the discrete path of obstacles, and established an improved A * algorithm searching for obstacle avoidance of discrete paths. Coordinate system transformation is adopted to convert a programming problem to curve coordinates, and adjacent aggregation model is used to simplify obstacles environment. Finally, cubic spline interpolation curve fitting of discrete path is used for continuous path for obstacle avoidance. Simulation results show that the proposed method can effectively generate a collision-free local obstacle avoidance path in the environment of multiple obstacles, and has good smoothness.

参考文献/References:

[1] KATRAKAZAS C, QUDDUS M, CHEN W H, et al. Real-time motion planning methods for autonomous on-road driving: State-of-the-art and future research directions [J]. Transportation Research Part C: Emerging Technologies, 2015, 60:416-442.

[2] BADUE C, GUIDOLINI R, CARNEIRO R V, et al. Self-Driving Cars: A Survey[J]. arXiv,2019. https://arxiv.org/abs/1901.04407v1.
[3] GONZALEZ D, PEREZ J, MILANES V, et al. A Review of Motion Planning Techniques for Automated Vehicles[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 17(4):1135-1145.
[4] DOLGOV D, THRUN S, MONTEMERLO M, et al. Path Planning for Autonomous Vehicles in Unknown Semi-structured Environments[J]. The International Journal of Robotics Research, 2010, 29(5):485-501.
[5] 宋晓琳, 周南, 黄正瑜, 等. 改进RRT在汽车避障局部路径规划中的应用[J]. 湖南大学学报(自科版), 2017, 44(4):30-37.
[6] REEDS J, SHEPP L. Optimal paths for a car that goes both forwards and backwards[J]. Pacific journal of mathematics, 1990, 145(2): 367-393.
[7] 李柏. 复杂约束下自动驾驶车辆运动规划的计算最优控制方法研究[D].杭州:浙江大学, 2018.
[8] HU X, CHEN L, TANG B, et al. Dynamic path planning for autonomous driving on various roads with avoidance of static and moving obstacles [J]. Mechanical Systems and Signal Processing, 2018, 100: 482-500.
[9] THRUN S, MONTEMERLO M, DAHLKAMP H, et al. Stanley: The robot that won the DARPA Grand Challenge[J]. Journal of Field Robotics, 2006, 23(9): 661-692.
[10] LEE U, YOON S, SHIM H C, et al. Local path planning in a complex environment for self-driving car[C]//The 4th Annual IEEE International Conference on Cyber Technology in Automation, Control and Intelligent. Hongkong: IEEE, 2014: 445-450.
[11] CHU K, LEE M, SUNWOO M. Local path planning for off-road autonomous driving with avoidance of static obstacles[J]. IEEE Transactions on Intelligent Transportation Systems, 2012, 13(4): 1599-1616.
[12] 闭小梅, 闭瑞华. KNN算法综述[J]. 科技创新导报, 2009(14):31.
[13] RAVAKAR A, RAVAKAR A, KOBAYASHI Y, et al. Path Smoothing Techniques in Robot Navigation: State-of-the-Art, Current and Future Challenges[J]. Sensors, 2018, 18(9):3170.
[14] DUBINS L E. On Curves of Minimal Length with a Constraint on Average Curvature, and with Prescribed Initial and Terminal Positions and Tangents[J]. American Journal of Mathematics, 1957, 79(3):497-516.
[15] CHOI J, CURRY R, ELKAIM G. Path planning based on bézier curve for autonomous ground vehicles[C]//Advances in Electrical and Electronics Engineering-IAENG Special Edition of the World Congress on Engineering and Computer Science 2008. San Francisco: IEEE, 2008: 158-166.
[16] KAWABATA K, MA L, XUE J, et al. A path generation for automated vehicle based on Bezier curve and via-points[J]. Robotics and Autonomous Systems, 2015, 74:243-252.
[17] GIM S, ADOUANE L, LEE S, et al. Clothoids Composition Method for Smooth Path Generation of Car-Like Vehicle Navigation[J]. Journal of Intelligent and Robotic Systems, 2017, 88(1):1-18.

相似文献/References:

[1]杨 帆,徐 彪. 多障碍物环境下智能车辆局部路径规划方法[J].控制与信息技术(原大功率变流技术),2019,(05):1.[doi:10.13889/j.issn.2096-5427.2019.05.200]
 YANG Fan,XU Biao. A Local Path Planning Method for Intelligent Vehicle in Multi-obstacle Environment[J].High Power Converter Technology,2019,(05):1.[doi:10.13889/j.issn.2096-5427.2019.05.200]

备注/Memo

备注/Memo:
收稿日期:2019-08-12
作者简介:杨帆(1995—),男,硕士研究生,主要研究方向为智能车辆路径规划;徐彪(1992—),男,副研究员,主要研究方向为车辆动力学与控制、车车/车路协同控制、智能车辆决策。
基金项目:汽车车身先进设计制造国家重点实验室重点项目(61775006)
更新日期/Last Update: 2019-10-23