[1]Florin Udrea. IGBT:概念、发展与新结构[J].控制与信息技术(原大功率变流技术),2017,(05):1-15.[doi:10.13889/j.issn.2095-3631.2017.05.001]
 Florin Udrea. IGBTs: Concept, Development and New Structures[J].High Power Converter Technology,2017,(05):1-15.[doi:10.13889/j.issn.2095-3631.2017.05.001]
点击复制

 IGBT:概念、发展与新结构()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年05期
页码:
1-15
栏目:
出版日期:
2017-10-05

文章信息/Info

Title:
 IGBTs: Concept, Development and New Structures
文章编号:
2095-3631(2017)05-0001-15
作者:
 Florin Udrea
 (剑桥大学,英国剑桥 CB3 0FA)
Author(s):
 Florin Udrea
 ( Cambridge University, Cambridge, CB3 0FA, United Kingdom )
关键词:
IGBT功率器件超结
Keywords:
 IGBT power device superjunction
分类号:
TN32
DOI:
10.13889/j.issn.2095-3631.2017.05.001
文献标志码:
A
摘要:
 绝缘栅双极晶体管(IGBT)是当今最具创新性的功率器件,是目前为止唯一将MOSFET 和双极结型晶体管结合在单元胞中的器件。由于MOSFET 和双极结型晶体管对开关控制和导通状态都有影响,因此为了优化器件性能及安全工作区,对二者的工作状态需要仔细地折中考虑。文章阐述了IGBT 技术的发展历史、器件结构及发展前景,涉及IGBT 的基本概念及技术挑战,讨论了促使IGBT 更新换代的主要技术进程,最后介绍了一些IGBT 新型器件结构及新兴技术。
Abstract:
 The insulated gate bipolar transistor (IGBT) is arguably the most innovative power device today. It is the only device concept known today that incorporates in a single cell a MOSFET with a bipolar junction transistor, whereby both devices are active in control and onstate and their operation must be carefully balanced to optimize the performance and safe operating area. This paper deals with the history, device and the future prospects of IGBT technologies. It covers the basics of the IGBT, technological challenges as well as discussing the main steps that led to development from one generation of IGBTs to another. This paper closes with a description of the new device concepts and emerging technologies based on IGBTs.

参考文献/References:

 [1] BALIGA B J. Enhancement and Depletion Mode Vertical-channel MOS Gated Thyristors [J]. Electronic Letters, IEE, London, 1979,15(20):645-647.
[2] PLUMMER J D, SCHARF B W. Insulated Gate Planar Thyristors:I- Structure and Basic Operation [J]. IEEE Trans. Electron Devices,1980, 27(2):380-387.
[3] LEIPOLD L, BAUMGARTNER W, LADENHAUF W, et al. A FET controlled Thyristor in FET technology [C]// IEDM. Washington,DC, USA, 1980: 79-82.
[4] TIHANYI J. Functional Integration of Power MOS and Bipolar Devices [C]// IEDM. Washington, DC, USA, 1980:75-78.
[5] BECKE H W, WHEATLEY C F. Power MOSFET with an Anode Region: US patent 4, 364, 073 [P].1982.
[6] RUSSEL J P, GOODMAN A M, GOODMAN L A, et al. The COMFET, a new high conductance MOS-gated device [J]. IEEE Electron Device Letters, 1983, 4(3):63-65.
[7] BALIGA B J, CHANG M , SHAFER P, et al. The Insulated Gate Transistor (IGT): A new power switching device [R]. IEEE-IAS,1983.
[8] BALIGA B J, ADLER M S, LOVE R P, et al. The Insulated Gate Transistor (IGT): A New three terminal MOS-controlled Bipolar Power device [J]. IEEE Electron Devices, 1984, 31(6): 821-828.
[9] UEDA D, KITAMURA K, TAKAGI H, et al. A new injection suppression structure for conductivity modulated power MOSFET’s [C]// Proc.18th Int. Conf. Solid State Device and Materials. Tokyo,1986: 97.
[10] CHANG H R, BALIGA B J. 500-V n-channel Insulated-Gate Bipolar Transistor with a trench gate structure [J]. IEEE Trans. Electron Device, 1989, 36 (9): 1824-1829.
[11] OTSUKI M, MOMOTA S, NISHIURA A, et al. The 3rd Generation IGBT toward a limitation of IGBT Performance [C] // Proc. 5th Int. Symp. Power Semiconductor Devices and ICs. Monterey, 1993:24-29.
[12] HARADA M, MINATO T, TAKAHASHI M, et al. 600 V Trench IGBT in comparison with planar IGBT [C] // Proc 6th Int. Symp.Power Semiconductor Devices and ICs, 1994:411.
[13] KITAGAWA M, OMURA I, HASEGAWA S, et al. A 4 500 V Injection Enhanced Insulated Gate Bipolar Transistor (IEGT) operating in a mode similar to a thyristor [C] // IEDM. Washington, DC, 1993: 679.
[14] UDREA F, CHAN S S M, THOMSON J, et al. 1.2 KV Trench Insulated Gate Bipolar Transistors (IGBTs) with ultra-low on-resistance [J].IEEE Electron Device Letters, 1999, 20(8): 428-430.
[15] LASKA T, PFIRSCH F, HIRLER F, et al. 1200V-Trench-IGBT Study with Square Short Circuit SOA [C]// Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs.Kyoto, Japan, 1998: 433-436.
[16] HSIEH A P S, CAMUSO G, UDREA F, et al. Field-stop layer optimization for 1200V FS IGBT operating at 200℃ [C]// 2014 IEEE 26th International Symposium on Power Semiconductor Devices & IC’s. Waikoloa, HI, USA, 2014: 115-118.
[17] HSIEH A P S, CAMUSO G, UDREA F, et al. Superjunction IGBT vs. FS IGBT for 200℃ operation [C]// Proceeding of the 24th International Symposium on Power Semiconductor Devices & ICs.Hongkong, 2015: 137-140.
[18] SCHLAPBACH U, RAHIMO M, VON ARX, et al. 1200V IGBTs operating at 200℃ ? An investigation on the potentials and the design constraints [C]// 24th International Symposium on Power Semiconductor Devices & IC’s. Jeju Island, South Korea, 2007:9-12.
[19] JOHNSON R W, BROMSTEAD J R, WEIR G B. 200℃ Operation of Semiconductor Power Devices [J]. IEEE Trans. CHMT, 1993,16(7):759-764.
[20] VOGEL K, CILIOX, SCHMAL A, et al. IGBT with higher operation temperature–Power density, lifetime and impact on inverter design[C]// Proc. PCIM Europe. Nuremberg, Germany, 2011:679-684.
[21] BALIGA B J. Modern Power Devices[M]. New York: Wiley, 1987.
[22] HEFNER A R, BLACKBURN D L. An analytical model for the steady-state and transient characteristics of the power Insulated Gate Bipolar Transistor [J]. Solid State Electronics, 1988, 31(10):1513-1532.
[23] UDREA F. Novel MOS-gated Bipolar Device Concepts towards a New Generation of Power Semiconductor Devices [D]. Cambridge:Cambridge University, 1995.
[24] AZAR R, UDREA F, DE SILVA M, et al, Advanced SPICE modelling of large power IGBT modules [J]. IEEE Trans. on Industry Applications, 2004, 40(3): 710-716.
[25] SYAU T, BALIGA B J. Mobility study on RIE etched silicon surfaces using SF6/O2 gas etchants [J]. IEEE Trans. Electron Device, 1993,40(11):1997-2005.
[26] SHENAI K. Optimised Trench MOSFET Technologies for Power Devices [J]. IEEE Trans. Electron Device, 1992,39(6): 1435-1443.
[27] UDREA F, AMARATUNGA G A J, HUANG Q. The effect ofthe hole current on the channel inversion in Trench Insulated Gate Bipolar Transistors (TIGBT) [J]. Solid State Electronics,1994,37(3):507-514.
[28] UDREA F, AMARATUNGA G A J. Theoretical and numerical comparison between trench and DMOS technologies for Insulated Gate Bipolar Transistors (IGBT) [J]. IEEE Transaction on Electron Devices, 1995, 42(7): 1356-1366.
[29] HOTZ R, BAUER F, FITCHNER W. On-state and short circuit behaviour of high voltage Trench Gate IGBTs in comparison with Planar IGBTs’ [C]// Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs. Yokohama, Japan, 1995:224-229.
[30] DEWAR S, LINDER S, ARX C V, et al. Soft Punch Through (SPT) –Setting new Standards in 1200V IGBT [C]// Proc. PCIM’00.Nuremberg, Germany, 2000:593.
[31] LASKA T, MUNZER M, PFIRSCH F, et al. The Field Stop IGBT
(FS IGBT) – A New Power Device Concept with great improvement potential [C]// The 12th International Symposium on Power Semiconductor Devices and ICs. Toulouse, France, 2000: 355-358.
[32] NAKAMURA H, NAKAMURA K, KUSUNOKI S, et al. Wide cell pitch 1200 V NPT CSTBTs with short circuit ruggedness[C]// Proceedings of the 13th International Symposium on Power Semiconductor Devices and ICs. Osaka, Japan, 2001: 299-302.
[33] OMURA I, OGURA T, SUGIYAMA K, et al. Carrier injection enhancement effect of high voltage MOS device – Device physics and design concept [C]//1997 International Symposium on Power Semiconductor Devices and IC’s. Weimar, Germany, 1997: 217-220.
[34] SHENG K, UDREA F, AMARATUNGA G A J. Optimum carrier distribution of the IGBT[J]. Solid-State Electronics, 2000, 44(9):1573-1583.
[35] TEMPLE V A K. MOS controlled thyristors [C]// 1984 International Electron Devices meeting. San Francisco, CA, USA, 1984: 282-285.
[36] BAUER F, ROGGWILER P, AEMMER A, et al. Design Aspects of MOS Controlled Thyristor Elements [C]// IEDM’89. Washington,DC, USA, 1989:297-300.
[37] BAUER F, HALDER E, HOFMANN K, et al. Design Aspects of MOS-Controlled Thyristor, Elements: Technology, Simulation, Experimental Results [J]. IEEE Trans. Electron Device, 1991,38(7):1605-1611.
[38] BALIGA B J. The MOS-gated Emitter Switched Thyristor [J]. IEEE Electron Device Lett., 1990,11(2): 75-77.
[39] GOUGH P A. MOS-gated thyrister: US patent 5,202,750[P]:1993.
[40] SHEKAR M S, KOREC J, BALIGA B J. Trench Gate Emitter Switched Thyristors[C]//Proceeding of the 6th International Symposium on Power Semiconductor Devices and ICs. Davos,Switzerland, 1994:189-194.
[41] UDREA F, AMARATUNGA G A J. The Inversion Layer Emitter Thyristor - a novel power device concept [C]// Proceeding of the 6th International Symposium on Power Semiconductor Devices and ICs.Davos, Switzerland,1994:309-314.
[42] UDREA F, AMARATUNGA G A J. The Inversion Layer Emitter Thyristor - A device related to an Insulated Gate Bipolar Transistor:US 5, 489787 [P].1996.
[43] UDREA F, AMARATUNGA G A J. Trench Inversion Layer Injection Thyristors: US 6091, 107 [P]. 2000.
[44] PETTI C J, PLUMMER J D. The Field-Assisted Turn-off Thyristor: A regenerative Device with Voltage-Controlled Turn-off [J]. IEEETrans. Electron Device, 1992, 39(8):1946-1953.
[45] NANDAKUMAR M, BALIGA B J, SHEKAR M S, et al.The Base Resistance Controlled Thyristor (BRT): A New MOS Gated Power Thyristor[C] // ISPSD, 1991,16(6):138-141.
[46] KITAGAWA M, OMURA I, HASEGAWA S, et al. 4500V Injection Enhanced Insulated Gate Bipolar Transistor (IEGT) Operating in a Mode Similar to a Thyristor [C]// IEEE IEDM Technical Digest.Washington, DC, USA, 1993:697-682.
[47] KITAGAWA M, NAKAGAWA A, MATSUSHITA K, et al. 4500V IEGTs having Switching Characteristics Superior to GTO [C] // Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs. Yokohama, Japan,1995: 486-491.
[48] TAKAHASHI H, HARUGUCHI H, HAGINO H, et al. Carrier Stored Trench-Gate Bipolar Transistor (CSTBT) – A Novel Power Device for High Voltage Application [C]// Proceeding of the 8th International Symposium on Power Semiconductor Devices and ICs.Maui, HI, USA, 1996:349-352.
[49] MORI M, UCHINO Y, SAKANO J, et al. A novel High –Conductivity IGBT (HiGT) with a Short Circuit Capability [C]// Proceeding of the 10th International Symposium on Power Semiconductor Devices and ICs. Kyoto, Japan, 1998:429-432.
[50] BAUER F, HARUGUCHI H, HAGINO H, et al. The MOS Controlled Super Junction Transistor: a new, efficient, high power semiconductor device for medium to high voltage applications[C]// Proceeding of the 14th International Symposium on Power Semiconductor Devices and ICs. Sante Fe, NM, USA, 2002: 197-200.
[51] BAUER F. The Super Junction Bipolar Transistor: a new silicon power device concept for ultra low switching applications at medium to high [J]. Solid State Electronics, 2004, 48(5):705-714.
[52] ANTONIOU M, UDREA F, BAUER F, et al. The Super Junction Insulated Gate Bipolar Optimization and Modeling [J]. IEEE Transactions on Electron Devices, 2010, 57(3): 594-600.
[53] DEBOY G, MARZ N, STENGL J P, et al. A new generation of high voltage MOSFETs breaks the circuit line of Silicon [C]// IEDMIEEE.San Francisco, CA, USA, 1998:683-685.
[54] FUJIHIRA T, MIYASAKA Y. Simulated Superior Performances of Semiconductor Superjunction Devices [C]// Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs.Kyoto, Japan, 1998: 423-426.
[55] UDREA F, POPESCU A, NG R, et al. Minority Carrier Injection across the 3D Resurf Junction [C] // The 12th International Symposium on Power Semiconductor Devices and ICs. Toulouse,France, 2000: 201-204.
[56] ANTONIOU M, UDREA F, BAUER F, et al. Point Injection in Trench Insulated Gate Bipolar Transistor for ultra low losses [C] // 2012
24th International Symposium on Power Semiconductor Devices &ICs. Bruges, Belgium, 2012,28(2): 21-24
[57] TAKAHASHI H, YOSHIDA S, NOGUCHI H, et al. 1200 V Reverse Conducting IGBT[C]// The 16th International Symposium on Power Semiconductor Devices & ICs. Kitakyushu, Japan, 2004:133.
[58] RAHIMO M, KOPTA A, SCHLAPBACH U, et al. The Bi-mode Insulated Gate Transistor (BiGT) A potential technology for higher power applications [C] // IEEE 21st International Symposium on Power Semiconductor Devices & IC’s. Barcelona, Spain, 2009:283-286.
[59] STORASTA L, RAHIMO M, BELLINI M, et al. The Radial Layout Design Concept for the Bi-mode Insulated Gate Transistor [C] //IEEE 23rd International Symposium on Power Semiconductor Devices & IC’s. San Diego, CA, USA, 2011:56-59.
[60] RAHIMO M, ANDENNA M, STORASTA L, et al. Demonstration of an Enhanced Trench Bimode Insulated Gate Transistor ET-BIGT [C] // IEEE 28th International Symposium on Power Semiconductor Devices & IC’s. Prague, Czech Republic, 2016:151-154.
[61] YOSHIDA T, TAKAHASHI T, SUZUKI K, et al. The Secondgeneration 600V RC-IGBT with Optimized FWD [C] // 2016 28th International Symposium on Power Semiconductor Devices & IC’s.Prague, Czech Republic, 2016: 159-162.
[62] HSU W C W, UDREA F, HSU H Y. Reverse-conducting Insulated Gate Bipolar Transistor with an Anti-parallel Thyristor[C] // 2010 22nd International Symposium on Power Semiconductor Devices &IC’s. Hiroshima, Japan, 2010:149-152.
[63] JIANG H P, ZHANG B, CHEN W, et al. A Snapback Suppressed RC-IGBT With a Floating p-Region in Trench Collector [J]. IEEE Electron Device Letters , 2012,33(3):417-419.
[64] DENG G Q, LUO X R, ZHOU K, et al. A Snapback-free RC-IGBT with Alternating N/P Buffers [C] // 2017 29th International Symposium on Power Semiconductor Devices & IC’s. Sapporo, Japan, 2017:127-130.
[65] BAUER F, FICHTNER W, DETTMER H, et al. A comparison of Emitter concepts for high voltage IGBTs [C]// Proceedings of the 7th International Symposium on Power Semiconductor Devices and ICs.Yokohama, Japan, 1995: 230-235.
[66] GEJO R, OGURA T, MISU S, et al. High Switching Speed Trench Diode for 1200V RC-IGBT Based on the Concept of Schottky Controlled Injection (SC) [C]// 2016 28th International Symposium on Power Semiconductor Devices & IC’s. Prague, Czech Republic,2016: 155-158.
[67] TAKEI M, NAITO T, UENO K, et al. The reverse blocking IGBT for matrix converter with Ultra-thin Wafer technology [C] // 2003 IEEE 15th International Symposium on Power Semiconductor Devices &ICs. Cambridge, UK, 2003: 156-159.
[68] TAKAHASHI H, KANEDA M, MINATO T, et al. 1200 V class Reverse Blocking IGBT (RB –IGBT) for AC matrix converter[C]// The 16th International Symposium on Power Semiconductor Devices & ICs.Kitakyushu, Japan, 2004:121-124.
[69] TOKUDA N, KANEDA M, MINATO T, et al. An ultra-small isolation area for 600 V class reverse blocking IGBT with deep trench isolation process (TI-RB-IGBT) [C] // The 16th International Symposium on Power Semiconductor Devices & ICs. Kitakyushu,Japan, 2004:129-132.
[70] NAKAGAWA A. Numerical experiment for 2500 V double gate bipolar mode MOSFETs (DGIGBT) and analysis for large safe operating area [C] // PESC. Kyoto, Japan, 1988:84-90.
[71] HUANG Q, AMARATUNGA G A J. Analysis of double trench insulated gate bipolar transistor [J]. Solid State Electronics, 1995,38(4):829-834.
[72] TRAJKOVIC T, UDREA F, AMARATUNGA G A J. Single to Double Gate TIGBTs - Possible Road-map to Ultra-High Voltage Bipolar-MOS Devices [C]// Proceedings of the 2001 Bipolar/BCMOS Circuits and Technology Meeting. Minneapolis, MIN, USA,2001:184-187.
[73] HOBART K D, KUB F J, ANCONA M, et al. Characterization of a bi-directional double-side double-gate IGBT fabricated by wafer bonding [C] // Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs. Osaka, Japan, 2001:125-128.
[74] PALMOUR J W. Silicon Carbide Power Device Development for Industrial Markets [C] // IEEE International Electron Devices Meeting. San Francisco, CA, USA, 2014: 111-118.
[75] LIU Y J, WANG Y, HAO Y, et al. 4H-SiC Trench IGBT With Back-Side n-p-n Collector for Low Turn-OFF Loss [J]. IEEE Transactions on Electron Devices, 2017, 64(2): 488-493.
[76] VECHALAPU K, BHATTACHARYA S, VAN BRUNT E, et al. Comparative Evaluation of 15-kV SiC MOSFET and 15-kV SiC IGBT for Medium-Voltage Converter Under the Same dv/dt Conditions[J]. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2017, 5(1):469-488.
[77] TRAJKOVIC T. UDUGAMPOLA N, PATHIRANA, et al. 800V Lateral IGBT in Bulk Si for Low Power Compact SMPS Applications [C] // 25th International Symposium on Power Semiconductor Devices and ICs. Kanazawa, Japan, 2013: 401-404.
[78] TERASHIMA T. A Novel Driving Technology for a Passive Gate on a Lateral-IGBT [C] // 21st International Symposium on Power Semiconductor Devices and IC’s. Barcelona, Spain, 2009:45-48.
[79] SHIGEKI, AKIO, YOUICHI, et al. Carrier-Storage Effect and Extraction-Enhanced Lateral IGBT ( E2LIGBT ): A Super-High Speed and Low On-state Voltage LIGBT Superior to LDMOSFET [C] // 2012 24th International Symposium on Power Semiconductor Devices & ICs.Bruges, Belgium, 2012.
[80] SAKURAI N, NEMOTO M, ARAKAWA H, et al. A three-phase inverter IC for AC220 V with a drastically small chip size and highly intelligent functions [C] // Proceedings of the 5th International Symposium on Power Semiconductor Devices and ICs. Monterey,CA, USA, 1993: 310-315.
[81] LETAVIC T, PETRUZZELLO J, CLAES J, et al. 650 V SOI LIGBT for Switch-Mode Power Supply Application [C]// International Symposium on Power Semiconductor Devices and IC’s. Naples,Italy, 2006: 1-4.
[82] TEE E K C, HOELKE A, PILKINGTON S, et al. 200 V Superjunction Lateral IGBT Fabricated on Partial SOI [C] // 25th International Symposium on Power Semiconductor Devices and ICs. Kanazawa,Japan, 2013:389-392.
[83] TRAJKOVIC T, UDREA F, LEE C, et al. Thick silicon membrane technology for reliable and high performance operation of high voltage LIGBTs in Power ICs [C] // 20th International Symposium on Power Semiconductor Devices and IC’s. Orlando, FL, USA,2008:327-330.

相似文献/References:

[1]蒋云富,黄 南,袁 勇,等.集成式IGBT 功率组件的现状及发展趋势[J].控制与信息技术(原大功率变流技术),2015,(03):1.[doi:10.13889/j.issn.2095-3631.2015.03.001]
 JIANG Yunfu,HUANG Nan,YUAN Yong,et al.Status and Development Trends of Integrated IGBT Power Assembly[J].High Power Converter Technology,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.03.001]
[2]丁 杰,张 平.电机控制器用IGBT 水冷散热器温升实验与热仿真[J].控制与信息技术(原大功率变流技术),2015,(03):23.[doi:10.13889/j.issn.2095-3631.2015.03.006]
 DING Jie,ZHANG Ping.Temperature-rise Test and Thermal Simulation for IGBT Water-cooled Radiator of Motor Controller[J].High Power Converter Technology,2015,(05):23.[doi:10.13889/j.issn.2095-3631.2015.03.006]
[3]黄 南,王世平,宋自珍.兆瓦级功率组件IGBT 失效研究[J].控制与信息技术(原大功率变流技术),2015,(03):35.[doi:10.13889/j.issn.2095-3631.2015.03.008]
 HUANG Nan,WANG Shiping,SONG Zizhen.Study of the IGBT Failure in Megawatt Power Assembly[J].High Power Converter Technology,2015,(05):35.[doi:10.13889/j.issn.2095-3631.2015.03.008]
[4]奉 琴,李世平,陈 彦,等.基于结构函数的大功率IGBT 热阻测量方法[J].控制与信息技术(原大功率变流技术),2015,(03):39.[doi:10.13889/j.issn.2095-3631.2015.03.009]
 FENG Qin,LI Shiping,CHEN Yan,et al.Measurement Method of IGBT Thermal Resistance Based on Structure Function[J].High Power Converter Technology,2015,(05):39.[doi:10.13889/j.issn.2095-3631.2015.03.009]
[5]夏一帆,王征宇,陈建明,等.基于ACPL-32JT 的电动汽车电机控制器 IGBT 驱动电路设计[J].控制与信息技术(原大功率变流技术),2015,(03):54.[doi:10.13889/j.issn.2095-3631.2015.03.013]
 XIA Yifan,WANG Zhengyu,CHEN Jianming,et al.Design of IGBT Drive Circuit for the Motor Controller of Electric Vehicle Based on ACPL-32JT[J].High Power Converter Technology,2015,(05):54.[doi:10.13889/j.issn.2095-3631.2015.03.013]
[6]吴义伯,戴小平,王彦刚,等.IGBT 功率模块封装中先进互连技术研究进展[J].控制与信息技术(原大功率变流技术),2015,(02):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
 WU Yibo,DAI Xiaoping,WANG Yangang,et al.State-of-the-art Progress of Advanced InterconnectionTechnology for IGBT Power Module Packaging[J].High Power Converter Technology,2015,(05):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
[7]李 云,朱世武,吴春冬,等.电动汽车电机控制器的发展[J].控制与信息技术(原大功率变流技术),2015,(02):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
 LI Yun,ZHU Shiwu,WU Chundong,et al.Development of the Motor Control Unit for Electric Vehicle[J].High Power Converter Technology,2015,(05):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
[8]焦明亮,李 云,朱世武,等.IGBT 门极驱动技术现状和发展趋势[J].控制与信息技术(原大功率变流技术),2015,(02):18.[doi:10.13889/j.issn.2095-3631.2015.02.004]
 JIAO Mingliang,LI Yun,ZHU Shiwu,et al.Status and Trend of IGBT Gate Drive Technology[J].High Power Converter Technology,2015,(05):18.[doi:10.13889/j.issn.2095-3631.2015.02.004]
[9]赵振波,王 恒.三电平NPC 拓扑结构中功率IGBT 器件的应用和分析[J].控制与信息技术(原大功率变流技术),2015,(02):24.[doi:10.13889/j.issn.2095-3631.2015.02.005]
 ZHAO Zhenbo,WANG Heng.Application and Analysis of Power IGBT Device in Three-level NPC Topology[J].High Power Converter Technology,2015,(05):24.[doi:10.13889/j.issn.2095-3631.2015.02.005]
[10]马龙昌,张东辉,杨 光,等.IGBT 并联应用技术研究[J].控制与信息技术(原大功率变流技术),2015,(02):35.[doi:10.13889/j.issn.2095-3631.2015.02.007]
 MA Longchang,ZHANG Donghui,YANG Guang,et al.Research on the IGBT Paralleling Application[J].High Power Converter Technology,2015,(05):35.[doi:10.13889/j.issn.2095-3631.2015.02.007]
[11]Florin Udrea.IGBT:概念、发展与新结构(英文)[J].控制与信息技术(原大功率变流技术),2017,(05):1.[doi:10.13889/j.issn.2095-3631.2017.05.001]
 Florin Udrea.IGBTs: Concept, Development and New Structures[J].High Power Converter Technology,2017,(05):1.[doi:10.13889/j.issn.2095-3631.2017.05.001]

备注/Memo

备注/Memo:
 收稿日期:2017-09-03
作者简介:Florin Udrea(1967-),男,教授,英国皇家工程学院院士,主要从事功率半导体器件和固态传感器领域的研究工作,拥有100 多项国际专利。
更新日期/Last Update: 2017-09-18