[1]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术(原大功率变流技术),2017,(02):1-11.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(02):1-11.[doi:10.13889/j.issn.2095-3631.2017.02.100]
点击复制

 微电网电能质量分层控制及其关键技术()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年02期
页码:
1-11
栏目:
综述·评论
出版日期:
2017-04-05

文章信息/Info

Title:
 Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids
文章编号:
2095-3631(2017)02-0000-04
作者:
 孟乐轩1赵 鑫1Mehdi Savaghebi1 韩民晓2Josep Guerrero1
 (1. 奥尔堡大学 能源系,(丹麦)北日德兰 奥尔堡 9220;2. 华北电力大学 电力工程系,北京 102206)
Author(s):
 MENG Lexuan1 ZHAO Xin1 SAVAGHEBI Mehdi1 HAN Min-xiao2 GUERRERO Josep1
 (1. Department of Energy Technology, Aalborg University, Aalborg, Nordjylland 9220, Denmark;
2. Department of Electrical Engineering, North China Electric Power University, Beijing 102206, China)
关键词:
 分布式发电 微电网 电能质量分层控制
Keywords:
 distributed generation micro-grid power quality hierarchical control
分类号:
TM711
DOI:
10.13889/j.issn.2095-3631.2017.02.100
文献标志码:
A
摘要:
 电力电子变换器的广泛使用使得利用并网逆变器进行电能质量调整成为可能,但这也对并网逆变器的控制提出了更多的要求。文章基于现有的研究成果与未来微电网及配电网的电能质量要求,提出了一种三层式管理与控制系统结构,并对每个层次的主要目标与核心技术进行了阐述。这种多层式的控制方法仍有待于研究者进行更多更深入的研究,最后对后续的工作进行了展望。
Abstract:
 wide application of power electronic converters enables the power quality regulation using grid-connected inverters of the distributed generators (DG), but it also brings more challenges on the control and management of those devices. Based on the existing research findings and the future power quality requirements in microgrids and distribution networks, it proposed a three-layer control and management scheme, and summarized the essential technics and challenges in each layer. A number of research issues are still open to be investigated, and the future research trend was discussed in the final section of the paper.

参考文献/References:

 [1]CHOwDHURY S, CROSSLEY P, CHOwDHURY S P. Microgrids and Active Distribution Networks[C]//Institution of Engineering and Technology, 2009.
[2]KATIRAEI F, IRAVANI M. Power Management Strategies for a Microgrid with Multiple Distributed Generation Units[J]. IEEE Trans. Power Syst., 2006, 21(4):1821-1831.
[3]LOPES J, MOREIRA C, MADUREIRA A. Defining Control Strategies for MicroGrids Islanded Operation[J]. IEEE Trans.Power Syst., 2006,21(2):916-924.
[4]LI Y, HE J. Distribution System Harmonic Compensation Methods:An Overview of DG-Interfacing Inverters[J]. IEEE Ind. Electron.Mag., 2014,8(4):18-31.
[5]GUERRERO J, LOH P, LEE T,et al. Advanced Control Architectures for Intelligent Microgrids—Part II: Power Quality, Energy Storage, and AC/DC Microgrids[J]. IEEE Trans. Ind. Electron., 2013,60(4):1263-1270.
[6]黎金英. 微电网分层控制及其电能质量改善研究[D]. 北京:华北电力大学,2015.
[7]ZOU Z, ZHOU K, wANG Z, et al.Frequency-Adaptive Fractional-Order Repetitive Control of Shunt Active Power Filters[J]. IEEE Trans. Ind. Electron., 2015, 62(3):1659-1668.
[8]BUSO S, CALDOGNETTO T, BRANDAO D. Dead-Beat Current Controller for Voltage-Source Converters with Improved Large-Signal Response[J]. IEEE Trans. Ind. Appl., 2016,52(2):1588-1596.
[9]HOLMES D,MARTIN D. Implementation of a Direct Digital Predictive Current Controller for Single and Three Phase Voltage Source Inverters[C]//Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting,1996, 2:906-913.
[10]HU Y, DENG Y, LIU Q, et al. Asymmetry Three-Level Gird- Connected Current Hysteresis Control with Varying Bus Voltage and Virtual Oversample Method[J]. IEEE Transactions on Power Electronics, 2014,29(6):3214-3222.
[11]SAVAGHEBI M, JALILIAN A, VASQUEZ J, et al.Secondary Control for Voltage Quality Enhancement in Microgrids[J]. IEEE Trans. Smart Grid, 2012,3(4):1893-1902.
[12]ZHAO X, GUERRERO J, SAVAGHEBI M, et al. Low Voltage Ride-Through Operation of Power Converters in Grid-Interactive Microgrids by Using Negative-Sequence Droop Control[J]. IEEE Trans. Power Electron., 2016:1-1.
[13]CAMACHO A, CASTILLA M, MIRET J, et al.Flexible Voltage Support Control for Three-Phase Distributed Generation Inverters Under Grid Fault[J]. IEEE Trans. Ind. Electron., 2013, 60(4):1429-1441.
[14]GUO X, ZHANG X, wANG B, et al. Asymmetrical Grid Fault Ride-Through Strategy of Three-Phase Grid-Connected Inverter Considering Network Impedance Impact in Low-Voltage Grid[J].IEEE Trans. Power Electron., 2014, 29(3):1064-1068.
[15]SUN X, HAN R, YANG L, et al. Study of a Novel Equivalent Model and a Long-Feeder Simulator-Based Active Power Filter in a Closed-Loop Distribution Feeder[J]. IEEE Trans Industrial Electronics, 2016, 63(5):2702-2712.
[16]HE J, LI Y, MUNIR M. A Flexible Harmonic Control Approach Through Voltage-Controlled DG–Grid Interfacing Converters[J].IEEE Trans. Ind. Electron., 2012, 59(1):444-455.
[17]LEE T,CHENG P. Design of a New Cooperative Harmonic Filtering Strategy for Distributed Generation Interface Converters in an Islanding Network[J]. IEEE Trans. Power Electron., 2007,22(5):1919-1927.
[18]CHENG P, CHEN C, LEE C, et al. A Cooperative Imbalance Compensation Method for Distributed-Generation Interface Converters[J]. IEEE Trans. Ind. Appl., 2009, 45(2):805-815.
[19]SAVAGHEBI M, JALILIAN A, VASQUEZ J, et al. Autonomous Voltage Unbalance Compensation in an Islanded Droop-Controlled Microgrid[J]. IEEE Trans. Ind. Electron., 2013, 60(4):1390-1402.
[20]SAVAGHEBI M, VASQUEZ J, JALILIAN A, et al. Selective Harmonic Virtual Impedance for Voltage Source Inverters with LCL Filter in Microgrids[C]//IEEE Energy Conversion Congress and Exposition (ECCE), 2012:1960-1965.
[21]CHEN Y, GUERRERO J, SHUAI Z, et al. Fast Reactive Power Sharing, Circulating Current and Resonance Suppression for Parallel Inverters Using Resistive-Capacitive Output Impedance[J]. IEEE Trans. Power Electron., 2016, 31(8):5524-5537.
[22]HE J,LI Y. Analysis, Design, and Implementation of Virtual Impedance for Power Electronics Interfaced Distributed Generation[J]. IEEE Trans. Ind. Appl., 2011, 47(6):2525-2538.
[23]BAE Y, VU T, KIM R. Implemental Control Strategy for Grid Stabilization of Grid-Connected PV System Based on German Grid Code in Symmetrical Low-to-Medium Voltage Network[J]. IEEE Trans. Energy Convers., 2013, 28(3):619-631.
[24]KALVERKAMP F, BRIELE B, NGUYEN T, et al. Comparative analysis of European Grid Codes and compliance standards for distributed power generation plants with respect to future requirements of ENTSO-E and CENELEC[C]//International ETG Congress 2015, 2015:605-610.
[25]BUNDESVERBAND. Technische Richtlinie-Erzeugungsanlagen am Mittelspannungsnetz[S]. Ed. 2008:138.
[26]National Grid:The Grid Code–Issue 4 Revision 5[S]. London: National Grid Code Electricity Transmission, 2010.
[27]YANG Y, BLAABJERG F, ZOU Z. Benchmarking of Grid Fault Modes in Single-Phase Grid-Connected Photovoltaic Systems[J].IEEE Trans. Ind. Appl., 2013, 49(5):2167-2176.
[28]YANG Y, wANG H, BLAABJERG F. Reactive Power Injection Strategies for Single-Phase Photovoltaic Systems Considering Grid Requirements[J]. IEEE Trans. Ind. Appl., 2014, 50(6):4065-4076.
[29]MIRET J, CAMACHO A, CASTILLA M, et al. Control Scheme with Voltage Support Capability for Distributed Generation Inverters Under Voltage Sags[J]. IEEE Trans. Power Electron., 2013,28(11):5252-5262.
[30]LEE T, HU S, CHAN Y. D-STATCOM with Positive-Sequence Admittance and Negative-Sequence Conductance to Mitigate Voltage Fluctuations in High-Level Penetration of Distributed-Generation Systems[J]. IEEE Trans. Ind. Electron., 2013, 60(4):1417-1428.
[31]KIRTLEY J, MOURSI M, XIAO w. Fault Ride Through Capability for Grid Interfacing Large Scale PV Power Plants[J]. IET Gener. Transm. Distrib., 2013, 7(9):1027-1036.
[32]LIN F, LU K, KE T, et al. Reactive Power Control of Three-PhaseGrid-Connected PV System During Grid Faults Using Takagi– Sugeno–Kang Probabilistic Fuzzy Neural Network Control[J].IEEE Trans. Ind. Electron., 2015, 62(9):5516-5528.
[33]LI S, FAIRBANK M, JOHNSON C, et al. Artificial Neural Networks for Control of a Grid-Connected Rectifier/Inverter Under Disturbance, Dynamic and Power Converter Switching Conditions[J]. IEEE Trans. Neural Networks Learn. Syst., 2014, 25(4):738-750.
[34]CARDENAS R, PENA R, ALEPUZ S, et al. Overview of Control Systems for the Operation of DFIGs in wind Energy Applications[J].IEEE Trans. Ind. Electron., 2013, 60(7):2776-2798.
[35]PANNELL G, ATKINSON D, ZAHAwI B. Minimum-Threshold Crowbar for a Fault-Ride-Through Grid-Code-Compliant DFIG wind Turbine[J]. IEEE Trans. Energy Convers., 2010, 25(3):750-759.
[36]wABG F, DUARTE J, HENDRIX M. Pliant Active and Reactive Power Control for Grid-Interactive Converters Under Unbalanced Voltage Dips[J]. IEEE Trans. Power Electron., 2011, 26(5):1511-1521.
[37]CHEN w, BLAABJERG F, ZHU N, et al.Doubly Fed Induction Generator wind Turbine Systems Subject to Recurring Symmetrical Grid Faults[J]. IEEE Trans. Power Electron., 2016, 31(2):1143-1160.
[38]VASQUEZ J, MASTROMAURO A, GUERRERO J, et al. Voltage Support Provided by a Droop-Controlled Multifunctional Inverte[r J].IEEE Trans. Ind. Electron., 2009, 56(11):4510-4519.
[39]HASHEMPOUR M, SAVAGHEBI M, VASQUEZ J, et al. A Control Architecture to Coordinate Distributed Generators and Active Power Filters Coexisting in a Microgrid[J]. IEEE Trans.Smart Grid, 2016, 7(5):2325-2336.
[40]SAVAGHEBI M, SHAFIEE Q, VASQUEZ J, et al. Adaptive Virtual Impedance Scheme for Selective Compensation of Voltage Unbalance and Harmonics in Microgrids[C]//2015 IEEE Power& Energy Society General Meeting, 2015:1-5.
[41]GUERRERO J, VASQUEZ J, MATAS J, et al. Hierarchical Control of Droop-Controlled AC and DC Microgrids — A General Approach Toward Standardization[J]. IEEE Trans. Ind. Electron., 2011,58:158-172.
[42]HAN Y, SHEN P, ZHAO X, et al. Control Strategies for Islanded Microgrid Using Enhanced Hierarchical Control Structure with Multiple Current-Loop Damping Schemes[J]. IEEE Trans. Smart Grid, 2015:1-1.
[43]SREEKUMAR P, KHADKIKAR V. Direct Control of Inverter Impedance to Achieve Controllable Harmonic Sharing in Islanded Microgrid[J]. IEEE Trans. Ind. Electron., 2016:1-1.
[44]MENG L. Distributed Voltage Unbalance Compensation in Islanded Microgrids by Using a Dynamic Consensus Algorithm[J].IEEE Trans. Power Electron., 2016, 31(1):827-838.
[45]MENG L, SAVAGHEBI M, TANG F, et al. Dynamic consensus algorithm based distributed voltage harmonic compensation in islanded microgrids[C]//17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe), 2015:1-9.
[46]OLFATI-SABER R, FAX J, MURRAY R. Consensus and Cooperation in Networked Multi-Agent Systems[J]. Proc. IEEE,2007, 95(1):215-233.
[47]HAMZEH M, KARIMI H, MOKHTARI H. A New Control Strategy for a Multi-Bus MV Microgrid Under Unbalanced Conditions[J]. IEEE Trans. Power Syst., 2012, 27(4):2225-2232.
.[48]ZENG Z, LI H, ZHAO R, et al. Multi-objective Control of Multifunctional Grid-connected Inverter for Renewable Energy Integration and Power Quality Service[J]. IET Power Electron., 2016, 9(4):761-770.
[49]MORTEZAEI A, SIMOES M, SAVAGHEBI M, et al. Cooperative Control of Multi-Master-Slave Islanded Microgrid with Power Quality Enhancement Based on Conservative Power Theory[J].IEEE Trans. Smart Grid, 2016:1-1.
[50]MENG L, TANG F, SAVAGHEBI M, et al. Tertiary Control of Voltage Unbalance Compensation for Optimal Power Quality in Islanded Microgrids[J]. IEEE Trans. Energy Convers.,2014(99):1-14.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(02):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(02):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]李志勇,吴斌斌,吴恒亮,等.基于微电网实验平台的分布式发电潮流问题研究[J].控制与信息技术(原大功率变流技术),2014,(06):6.[doi:10.13889/j.issn.2095-3631.2014.06.002]
 LI Zhiyong,WU Binbin,WU Hengliang,et al.Research on the Power Flow of Distributed Generation Based on Micro-grid Experiment Platform[J].High Power Converter Technology,2014,(02):6.[doi:10.13889/j.issn.2095-3631.2014.06.002]
[4]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[5]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[6]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(02):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[7]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(02):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[8]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(02):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[9]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术(原大功率变流技术),2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(02):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[10]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(02):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]

备注/Memo

备注/Memo:
 收稿日期:2017-01-04
作者简介:孟乐轩(1987-),男,博士,主要研究方向为微电网、船舶/ 飞机电力系统。
基金项目:中国- 丹麦政府间科技合作项目(2014DFG72620)
更新日期/Last Update: 2017-03-31