[1]常桂钦,等.基板拱度类型对IGBT 模块应力的影响[J].控制与信息技术(原大功率变流技术),2017,(01):45-49.[doi:10.13889/j.issn.2095-3631.2017.01.009]
 CHANG Guiqin,DOU Zechun,et al.Effects of Baseplate Bow Type on Stress of IGBT Module[J].High Power Converter Technology,2017,(01):45-49.[doi:10.13889/j.issn.2095-3631.2017.01.009]
点击复制

基板拱度类型对IGBT 模块应力的影响()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年01期
页码:
45-49
栏目:
电力电子器件
出版日期:
2017-02-05

文章信息/Info

Title:
Effects of Baseplate Bow Type on Stress of IGBT Module
文章编号:
2095-3631(2017)01-0045-05
作者:
常桂钦1 2窦泽春1 2彭勇殿1 2方 杰1 2曾 雄1 2
(1. 新型功率半导体器件国家重点实验室,湖南 株洲 412001;2. 株洲中车时代电气股份有限公司,湖南 株洲 412001)
Author(s):
CHANG Guiqin 1 2 DOU Zechun 1 2 PENG Yongdian 1 2 FANG Jie 1 2 ZENG Xiong 1 2
( 1. State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou , Hunan 412001,China; 2. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China)
关键词:
IGBT 模块基板单面拱双面拱热应力拱度
Keywords:
IGBT module baseplate single-side bow double-side bow thermal stress bow
分类号:
TN32
DOI:
10.13889/j.issn.2095-3631.2017.01.009
文献标志码:
A
摘要:
为研究基板拱度类型对IGBT 模块应力的影响,建立了双面拱与单面拱基板的IGBT 模块三维有限元模型;利用ANSYS LS-DYNA 求解器计算得到了装配及工作状态下IGBT 模块的热应力与基板拱度变化。仿真结果显示,在散热器上的模块处于装配及工作状态下,单面拱基板封装的模块热应力均低于双面拱基板的,而单面拱基板拱度变化与双面拱基板拱度变化相当。
Abstract:
In order to study the effects of baseplate bow type on stress of IGBT module, 3D finite models of IGBT modules with single-side bow and double-side bow baseplate were established. Variations of thermal stress and baseplate bow were obtained by ANSYS LS-DYNA solver in assembled and working status. Simulation results show that thermal stress of single-side bow is lower than that of double-side bow in two different conditions and baseplate bow changes of single-side bow are almost equal to that of double-side bow.

参考文献/References:

[1]王彦刚,STEVE J,刘国友. 功率IGBT 模块的可靠性分析[J]. 机车电传动,2013(1):5-9.   
  WANG Y G,STEVE J,LIU G Y. Reliability Analysis of Power IGBT Modules[J]. Electric Drive for Locomotives,2013(1):5-9.
[2]CIAPPA M.Selected failure mechanisms of modern power modules [J]. Microelectronics Reliability, 2002, 42 (4-5):653-667.
[3]SHINOHARA K, YU Q. Fatigue life evaluation of power devices using finite element method[J]. International Journal of Fatigue, 2011, 33(9):1221-1234.
[4]陈民铀,高兵,杨帆,等. 基于电- 热- 机械应力多物理场的 IGBT 焊料层健康状态研究[J]. 电工技术学报,2015,30(20): 252-259.   
  CHEN M Y, GAO B, YANG F, et al. Healthy Evaluation on IGBT Solder Based on Electro-Thermal-Mechanical Analysis[J]. Transactions of China Electrotechnical Society,2015,30(20): 252-259.
[5]BOUARROUDJ M, KHATIR Z , OUSTEN JP. Comparison of stress distributions and failure modes during thermal cycling andpower cycling on high power IGBT modules[C]//Power Electronics and Applications, 2007:1-10.
[6]魏克新,杜明星. 基于集总参数法的IGBT 模块温度预测模型[J]. 电工技术学报,2010,26(12):79-84.   
  WEI K X, DU M X. Temperature Prediction Model of IGBT Modules Based on Lumped Parameters Method[J]. Transactions of China Electrotechnical Society,2011,26(12):79-84.
[7]陈明,胡安,唐勇,等. 绝缘栅双极型晶体管传热模型建模分析[J]. 高电压技术,2011,37(2):453-458.
   CHEN M, HU A, TANG Y ,et al. Modeling Analysis of IGBT Thermal Model[J]. High Voltage Engineering,2011,37(2):453-458.
[8]曾雄,张泉. 基板拱度对真空回流焊接工艺的影响[J]. 大功率变流技术,2011(3):1-4.
   ZENG X, ZHANG Q. The Impact of Baseplate Bow on Vacuum Reflow Soldering[J]. High Power Converter Technology,2011(3):1-4.
[9]周洋,徐玲,张泽峰,等. IGBT 模块回流焊工艺中预翘曲铜基板的研究[J]. 中国电子科学院学报,2013(6):578-582.
   ZHOU Y, XU L, ZHANG Z F,et al. Study of Pre-warpage Cu Substrate of IGBT Module in Reflow Process[J]. Journal of China Academy of Electronics and Information Technology,2013, 8(6): 578-582.
[10]ATLAS user’s manual[Z]. SILVACO International Inc, 2012:461.
[11]KOJIMA T, YAUNADAY, CIAPPA M, et al. A novel electrothermal simulation approach of power IGBT modules for automotive traction applications[C]//Proceeding of 2004 international symnposium on power semiconductor devices and ICs. Kitakyushu, 2004.
[12]Dynex Semiconductor Limited. DNX_DIM1500ESM33-TL000. pdf(EB/OL). [2016-07-01]. http://www.dynexsemi.com/downloads/ product-area/

相似文献/References:

[1]陈明锋,雷万钧,付翀丽,等.T 型三电平结构SVG 的损耗研究[J].控制与信息技术(原大功率变流技术),2015,(04):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
 CHEN Mingfeng,LEI Wanjun,FU Chongli,et al.Research on the Loss of Three-level T-type Inverter in SVG[J].High Power Converter Technology,2015,(01):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
[2]王彦刚,戴小平,吴义伯,等.IGBT 模块功率损耗的产生机理、计算及模拟[J].控制与信息技术(原大功率变流技术),2015,(02):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
 WANG Yangang,DAI Xiaoping,WU Yibo,et al.The Mechanism, Calculation and Simulation of Power Loss for IGBT Modules[J].High Power Converter Technology,2015,(01):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
[3]方 杰,彭勇殿,窦泽春,等.高压IGBT 模块中AlN 衬板的局部放电特性研究[J].控制与信息技术(原大功率变流技术),2015,(05):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
 FANG Jie,PENG Yongdian,DOU Zechun,et al.Research on Partial Discharge Behavior of AlN Substrate in High Voltage IGBT Module[J].High Power Converter Technology,2015,(01):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
[4]李世平,奉琴,陈彦,等.IGBT模块中续流二极管关断过程失效机理分析[J].控制与信息技术(原大功率变流技术),2014,(05):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
 LI Shiping,FENG Qin,CHEN Yan,et al.Analysis of Turn-off Failure Mechanism for the Freewheeling Diode in IGBT Module[J].High Power Converter Technology,2014,(01):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
[5]李 寒,曾 雄,徐凝华,等.超声扫描在IGBT 模块质量分析中的应用[J].控制与信息技术(原大功率变流技术),2016,(02):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
 LI Han,ZENG Xiong,XU Ninghua,et al.Application of Acoustic Scanning Technology in Quality Analysis of IGBT Module[J].High Power Converter Technology,2016,(01):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
[6]文 驰,李保国,熊 辉,等.IGBT 模块杂散电感分析与仿真[J].控制与信息技术(原大功率变流技术),2016,(04):30.[doi:10.13889/j.issn.2095-3631.2016.04.006]
 WEN Chi,LI Baoguo,XIONG Hui,et al.Analysis and Simulation of Stray Inductance of IGBT Module[J].High Power Converter Technology,2016,(01):30.[doi:10.13889/j.issn.2095-3631.2016.04.006]
[7]徐凝华,吴义伯,刘国友,等.混合动力/电动汽车用IGBT功率模块的最新封装技术[J].控制与信息技术(原大功率变流技术),2013,(01):1.[doi:10.13889/j.issn.2095-3631.2013.01.001]
 XU Ning-hua,WU Yi-bo,LIU Guo-you,et al.The Latest Packing Technology for IGBT Module in HEV/EV Application[J].High Power Converter Technology,2013,(01):1.[doi:10.13889/j.issn.2095-3631.2013.01.001]
[8]吴煜东,万正芬,彭勇殿.高压IGBT模块AlN覆铜衬板特性研究[J].控制与信息技术(原大功率变流技术),2012,(05):1.[doi:10.13889/j.issn.2095-3631.2012.05.001]
 WU Yu-dong,WAN Zheng-fen,PENG Yong-dian.The Investigation of Copper Metalized AlN for High Voltage IGBT Module[J].High Power Converter Technology,2012,(01):1.[doi:10.13889/j.issn.2095-3631.2012.05.001]
[9]袁 勇,等.主功率端子压接技术在IGBT 模块高集成设计中的应用研究[J].控制与信息技术(原大功率变流技术),2017,(01):39.[doi:10.13889/j.issn.2095-3631.2017.01.008]
 YUAN Yong,XIONG Hui,et al.Research on Pressure-contact Technology of Power Terminals for the Design of High-integration IGBT Module[J].High Power Converter Technology,2017,(01):39.[doi:10.13889/j.issn.2095-3631.2017.01.008]
[10]方杰,常桂钦,彭勇殿,等.基于ANSYS的大功率IGBT模块传热性能分析[J].控制与信息技术(原大功率变流技术),2012,(02):16.[doi:10.13889/j.issn.2095-3631.2012.02.002]
 FANG Jie,CHANG Gui-qin,PENG Yong-dian,et al.Thermal Performance Analysis of High-power IGBT Module Based on ANSYS[J].High Power Converter Technology,2012,(01):16.[doi:10.13889/j.issn.2095-3631.2012.02.002]
[11]张泉.高压IGBT模块基板焊接工艺研究[J].控制与信息技术(原大功率变流技术),2011,(03):5.[doi:10.13889/j.issn.2095-3631.2011.03.003]

备注/Memo

备注/Memo:
收稿日期:2016-07-09
作者简介:常桂钦(1983-),男,工程师,长期从事大功率IGBT 模块的设计研究工作。
基金项目:国家科技重大专项02 专项(2013ZX02305)
更新日期/Last Update: 2017-02-28