[1]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术(原大功率变流技术),2016,(05):46-50.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(05):46-50.[doi:10.13889/j.issn.2095-3631.2016.05.200]
点击复制

 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2016年05期
页码:
46-50
栏目:
电力电子器件
出版日期:
2016-10-05

文章信息/Info

Title:
 Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage
文章编号:
2095-3631(2016)05-0046-05
作者:
 彭朝阳1白 云1申华军1吴煜东2 高云斌2刘新宇1
 (1. 中国科学院 微电子研究所,北京 100029;2. 新型功率半导体器件国家重点实验室,湖南 株洲 412001)
Author(s):
 PENG Zhaoyang1 BAI Yun1 SHEN Huajun1 WU Yudong2 GAO Yunbin2 LIU Xinyu1
 (1.Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China;
2. State Key Laboratory of Advanced Power Semiconductor Devices Ltd., Zhuzhou, Hunan 412001, China)
关键词:
 击穿电压 4H-SiC结势垒肖特基二极管
Keywords:
 breakdown voltage 4H-SiC junction barrier Schottky (JBS)diode
分类号:
TN34
DOI:
10.13889/j.issn.2095-3631.2016.05.200
文献标志码:
A
摘要:
 为满足轨道交通电力牵引应用对高压SiC 二极管器件的需求,对4H-SiC 器件有源区采用了不同JBS栅条参数设计,并通过TCAD 仿真对比分析了栅条参数对器件性能的影响;器件终端结构采用经过优化的35 个场限环结构设计;最后采用Ti 作为肖特基金属,制备获得的3 300 V/15 A 4H-SiC JBS 器件势垒高度约为1.19 eV、击穿电压高于3 300 V。这是国内首次报道的3 300 V/15 A 规格SiC JBS 器件产品。通过实验测得:器件的特征导通电阻为7.6~19 mΩ·cm2;室温下,反向偏压达到3 300 V 时,器件的漏电流仅为0.3 μA,雪崩击穿电压达到3 800 V。
Abstract:
 In order to meet the demands of high-voltage SiC diodes in railway traction, different gate parameters were applied to the active area of 4H-SiC device and their effects on device performance were comparatively analyzed through TCAD simulation. The junction termination extension (JTE) structures used optimized 35 rings. With Ti as Schottky contact metal, the fabricated 3 300 V/15 A SiC JBS device obtained a Shcottky barrier of 1.19 eV and the blocking voltage was above 3 300 V. According to the device’s characteristic curves, the specific on resistance was calculated to be 7.6 mΩ?cm2 and 19 mΩ·cm2 respectively. This is the first reported 3 300 V/15 A type SiC JBS device fabricated in china . Experimental results show that the diode has a blocking voltage up to 3 300 V with low leakage current of 0.3 μA at room temperature, and the avalanche breakdown voltage is 3 800 V.

参考文献/References:

[1]李宇柱. SiC 电力电子技术综述[J]. 固体电子学研究与进展,2011, 31(3):213-217.
[2]ZHANG Y M, ZHANG Y M, ALEXANDROV P, et al. Fabrication of 4H-SiC merged PN-schottky diodes[J]. Chinese Journal of Semiconductors, 2001, 22(3):265-270.
[3] 张发生,李欣然 . 基于结终端扩展的4H-SiC 肖特基二极管研制[J]. 固体电子学研究与进展,2010,30(1):146-149.
[4]张发生,李欣然. Mo/4H-SiC 肖特基势垒二极管的研制[J]. 半导体学报,2007, 28(3):435-438.
[5]杨霏, 商庆杰, 李亚丽,等. 高性能SiC 整流二极管研究[J].纳米器件与技术,2010,40(7):394-396.
[6]倪炜江,李宇柱,李哲洋,等. 2 700 V 4H-SiC 结势垒肖特基二极管[J]. 固体电子学研究与进展,2010, 30(4):478-480.
[7]黄润华,李理,陶永洪,等. 4 500 V碳化硅肖特基二极管研究[J].固体电子学研究与进展,2013, 33(3):220-223.
[8]HUANG R H, TAO Y H, CAO P F,et al. Development of 10 kV 4H-SiC JBS diode with FGR termination[J]. Journal of Semiconductors,2014, 35(7):074005.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(05):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(05):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(05):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]陈喜明,等.4H-SiC 栅氧氮化工艺优化[J].控制与信息技术(原大功率变流技术),2016,(05):41.[doi:10.13889/j.issn.2095-3631.2016.05.008]
 CHEN Ximing,,et al.Nitridation Process Optimization of 4H-SiC Gate Oxidation[J].High Power Converter Technology,2016,(05):41.[doi:10.13889/j.issn.2095-3631.2016.05.008]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术(原大功率变流技术),2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(05):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]

备注/Memo

备注/Memo:
 收稿日期:2016-05-19
作者简介:彭朝阳(1991-),男,博士研究生,主要从事SiC/SiO2界面调控及SiC 电力电子器件研发工作。
基金项目:国家科技重大专项02 专项(2013ZX02305001)
更新日期/Last Update: 2016-09-30