[1]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1-6.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(03):1-6.[doi:10.13889/j.issn.2095-3631.2016.03.100]
点击复制

 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2016年03期
页码:
1-6
栏目:
“电能质量与智慧能源”专刊
出版日期:
2016-06-05

文章信息/Info

Title:
 Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory
文章编号:
2095-3631(2016)03-0000-04
作者:
 邓云川 高 宏 陈建君
 (中国中铁二院工程集团有限责任公司,四川 成都 610031)
Author(s):
 DENG YunchuanGAO HongCHEN Jianjun
 (China Railway Eryuan Engineering Group Co. Ltd., Chengdu, Sichuan 610031, China)
关键词:
 牵引网电气参数Carson 理论多导体传输线综合阻抗
Keywords:
 electrical parameter of traction network Carson theory multi-conductor transmission line comprehensive impedance
分类号:
U223
DOI:
10.13889/j.issn.2095-3631.2016.03.100
文献标志码:
A
摘要:
 Carson 理论假设是位于大地上所有导体均以大地为唯一回流通道,而实际牵引网存在多条回流通道,该假设导致牵引网各导体的电流分配难以直接确定,无法直接获取各导体的载流能力需求。文章基于多导体传输回路系统,拓展了Carson 理论的假设前提,在牵引网阻抗计算中考虑了实际参与回流的导体。利用该拓展理论,结合隧道内Tylavsky 公式确定的大地等值深度计算方法, 完成了单线隧道内阻抗参数计算,为电气化铁路牵引网数学模型的精确描述及电气参数计算探索了新的思路和方法。
Abstract:
 Carson theory assumes that all the conductors on the earth take the ground as an unique loop circuit, but there are multiple return paths in one actual traction network, thus it is difficult to directly determine current distribution and obtain the current -carrying requirement of each conductor in traction network. Based on the loop circuit system of multi- conductor transmission, it revised the assumption of Carson theory and considered the conductors that actually involved in circumfluence. On the basis of this revised theory, it combined the equivalent depth calculation of the ground achieved by Tylavsky formula to complete comprehensive impedance parameter calculation of single-line tunnel, which explored new ways for the accurate description of mathematical model and the calculation of electrical parameters of the electrified railway traction network.

参考文献/References:

 [1]吴命利.电气化铁道牵引网的统一链式电路模型[J].中国电机工程学报,2010,30(28):52-58.
[2]何俊文,李群湛,刘炜,等.交流牵引供电系统仿真通用数学模型及其应用[J].电网技术,2010,34(7):25-29.
[3]张杨,刘志刚.基于电磁暂态分析的高速铁路牵引网谐波模型及谐波特性分析[J].电网技术,2011,35(5):70-75.
[4]胡海涛,何正友,王江峰,等.基于车网耦合的高速铁路牵引网潮流计算[J]. 中国电机工程学报,2012,32(19):101-108.
[5]孙科.电气化铁路牵引供电系统电磁暂态仿真研究[D].杭州:浙江大学,2015.
[6]CARSON J R.Wave propagation in overhead wires with ground return [J].Bell System Technical Journal,1926(5):339-359.
[7]TYLAVSKY D J.Conductor impedance approximations for deepunderground mines[J].IEEE Trans. Ind. Appl. (United States),1987,IA-23(4):723-730.
[8]吴命利,范瑜,辛成山.电气化隧道中的导线—地回路阻抗[J].中国电机工程学报,2006,26(5): 176-181.
[9]吴命利.牵引供电系统电气参数与数学模型研究[D].北京:北京交通大学,2006.
[10]胡海涛. 高速铁路牵引供电系统谐波传输及谐振规律研究[D].成都:西南交通大学, 2014.
[11]张桂南,刘志刚,郭晓旭,等.高速铁路隧道及高架桥路段牵引网建模与分析[J].铁道学报,2015,37(11):16-24.
[12]郭晓旭.高速铁路牵引网建模与仿真[D].成都:西南交通大学,2014.
[13]MARISCOTTI A,POZZOBON P.Measurement of the internal impedance of traction rails at audio frequency[J]. IEEE Transactions on Instrumentation & Measurement,2004,53(3):792-797.
[14]李群湛.牵引供电系统分析[M].成都:西南交通大学出版社,2007.
[15]TYLAVSKY D J,BROWN K A,MA T T.Closed-form solution for underground impedance calculations[J]. Proceedings of the IEEE,1986,74(9):1290-1292.
[16]NATARAJAN R,IMECE A F,POPOFF J,et al.Analysis of grounding systems for electric traction[J]. IEEE Transactions on Power Delivery,2001,16(3):389-393.
[17]MARISCOTTI A,POZZOBON P,VANTI M.Distribution of the Traction Return Current in AT Electric Railway Systems[J].IEEE Transactions on Power Delivery,2005,20(3):2119-2128.
[18]TEGOPOULOS J A,KRIEZIS E E.Eddy current distribution in cylindrical shells of infinite length due to axial currents Part 1:Shells of one boundary[J]. IEEE Trans. on Power Apparatus and Systems,1971,PAS-90(3):1278-1286.
[19]WAIT J R,HILL D A.Guided electromagnetic waves along an axial conductor in a circular tunnel[C]//IEEE Trans. on Antennas Propagat,1974,22:627-630.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(03):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(03):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(03):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君.基于拓展Carson理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):6.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun.Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(03):6.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(03):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(03):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术(原大功率变流技术),2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(03):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术(原大功率变流技术),2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(03):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]

备注/Memo

备注/Memo:
 收稿日期:2016-03-30
作者简介:邓云川(1974-),男,博士研究生,教授级高级工程师,研究方向为高速铁路牵引供电系统建模。
更新日期/Last Update: 2016-06-14