[1]丁 杰,张 平.电机控制器用IGBT 水冷散热器温升实验与热仿真[J].控制与信息技术(原大功率变流技术),2015,(03):23-28.[doi:10.13889/j.issn.2095-3631.2015.03.006]
 DING Jie,ZHANG Ping.Temperature-rise Test and Thermal Simulation for IGBT Water-cooled Radiator of Motor Controller[J].High Power Converter Technology,2015,(03):23-28.[doi:10.13889/j.issn.2095-3631.2015.03.006]
点击复制

电机控制器用IGBT 水冷散热器温升实验与热仿真()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2015年03期
页码:
23-28
栏目:
变流与控制
出版日期:
2015-06-05

文章信息/Info

Title:
Temperature-rise Test and Thermal Simulation for IGBT Water-cooled Radiator of Motor Controller
文章编号:
2095-3631(2015)03-0023-06
作者:
丁 杰12张 平1
1. 湘潭大学 土木工程与力学学院,湖南 湘潭 411105;
2. 南车株洲电力机车研究所有限公司,湖南 株洲 412001
Author(s):
DING Jie12 ZHANG Ping1
1. College of Civil Engineering and Mechanics, Xiangtan University, Xiangtan, Hunan 411105, China;
2. CSR Zhuzhou Institute Co., Ltd., Zhuzhou, Hunan 412001, China
关键词:
IGBT水冷散热器模拟热源低Re 数湍流模型
Keywords:
IGBT water-cooled radiator simulated heat source low Reynolds number turbulence model
分类号:
U464.138
DOI:
10.13889/j.issn.2095-3631.2015.03.006
文献标志码:
A
摘要:
电动汽车电机控制器用IGBT 水冷散热器的结构紧凑,冷却水在槽道中的流动情况复杂,导致水冷散 热器热仿真时很难确定合适的流动状态模型。为解决该问题,以某电动汽车电机控制器用IGBT 水冷散热器为研究 对象,实验研究了模拟热源发热量、入口流量和冷却介质对温升曲线的影响;同时利用FLUENT软件提供的层流模型、 标准k-ε 模型和6 种低雷诺数(Re 数)湍流模型进行了仿真分析。结果表明:该IGBT 水冷散热器内部各槽道的平 均流速各不相同,Re 数在几百至几千之间,层流和标准k-ε 模型得到的温度结果可以表示不同流动状态模型的上下限, Lan-Bremhorst 低Re 数湍流模型得到的温度结果与实验数据较为吻合。
Abstract:
The structure of IGBT water-cooled radiator for electric vehicle motor controller is compact, and the internal flow state is complex, which may result in that the appropriate flow state model of water-cooled radiator for thermal analysis cannot be determined easily. In order to solve this problem, an IGBT water-cooled radiator of motor controller was studied. The influences of simulated heat source, inlet flow volume and cooling medium on temperature rise were studied by experiment, and the simulation with laminar model, standard k-ε model and 6 different low Reynolds number turbulent models were carried out in FLUENT software. The results show that the average velocity of IGBT water-cooled radiator’s internal channel are not identical, the Reynolds numbers are between in the hundreds to thousands, the temperature results obtained by laminar flow model and standard k-ε model can represent the upper and lower limit of temperature results in different flow state models, and the temperature results obtained by Lan-Bremhorst low Reynolds turbulence model are in accordance with the experimental data.

参考文献/References:

[1]乐智. 纯电动汽车电机驱动系的冷却系统设计与研究[D]. 天津: 河北工业大学, 2010.
[2]曾智波. 电动汽车用永磁同步电机驱动系统的研究与实现[D]. 长沙: 湖南大学, 2011.
[3]王江江,荆有印,安大伟,等. 水冷式散热器试验台控制系统 设计[J]. 暖通空调, 2007, 37(3):71-74.
[4]刘海法. 电力电子集成模块微通道液冷基板测试系统设计与实 现[D]. 济南:山东大学, 2010.
[5]白丽. 电力电子集成模块热等效装置设计与实现[D]. 济南: 山东大学,2011.
[6]丁杰,忻力,唐玉兔,等. 模拟热源对IGBT 水冷散热器仿真结 果的影响[J]. 制造业自动化,2013,35(11):64-67.
[7]张永恒,王业峰,王良璧. 列车牵引变流器水冷散热的实验研 究[J]. 工程热物理学报,2013,34(8): 1534-1538.
[8]支淼川. 电力电子设备水冷散热器的数值模拟[D]. 保定: 华 北电力大学,2006.
[9]闫迎军. 综合模块化航空电子设备结构设计[D]. 西安:西安 电子科技大学,2006.
[10]丁杰,何多昌,唐玉兔. 翅柱式水冷散热器的性能研究[J]. 大功率变流技术,2013(2):32-36.
[11]丁杰,唐玉兔,忻力,等. 网格尺寸对IGBT 水冷散热器仿真 结果的影响[J]. 大功率变流技术,2012(6):26-30.
[12]包明冬,马展,崔洪江,等. 电力电子器件IGBT 用水冷板式 散热器热力性能的数值模拟[J]. 内燃机车,2012(5):1-4.
[13]HAN Minsub, LEE Su-Dong, HONG Chanook, et al. Development of water-cooled heat sink for high-power IGBT inverter[C]//The 7th International Conference on Power Electronics. Daegu(Korea). 2008:295-299.
[14]Salem T E, Bayne S B, Porsehet D, et al. Thermal performance of water-cooled heat sinks[C]//20th Annual IEEE Applied Power Electronics Conference and Exposition. Texas. 2005:129-133.
[15]丁杰,张平. IGBT 水冷散热器实验与仿真[J]. 华北电力大 学学报(自然科学版),2015,42(1):97-103.

相似文献/References:

[1]蒋云富,黄 南,袁 勇,等.集成式IGBT 功率组件的现状及发展趋势[J].控制与信息技术(原大功率变流技术),2015,(03):1.[doi:10.13889/j.issn.2095-3631.2015.03.001]
 JIANG Yunfu,HUANG Nan,YUAN Yong,et al.Status and Development Trends of Integrated IGBT Power Assembly[J].High Power Converter Technology,2015,(03):1.[doi:10.13889/j.issn.2095-3631.2015.03.001]
[2]黄 南,王世平,宋自珍.兆瓦级功率组件IGBT 失效研究[J].控制与信息技术(原大功率变流技术),2015,(03):35.[doi:10.13889/j.issn.2095-3631.2015.03.008]
 HUANG Nan,WANG Shiping,SONG Zizhen.Study of the IGBT Failure in Megawatt Power Assembly[J].High Power Converter Technology,2015,(03):35.[doi:10.13889/j.issn.2095-3631.2015.03.008]
[3]奉 琴,李世平,陈 彦,等.基于结构函数的大功率IGBT 热阻测量方法[J].控制与信息技术(原大功率变流技术),2015,(03):39.[doi:10.13889/j.issn.2095-3631.2015.03.009]
 FENG Qin,LI Shiping,CHEN Yan,et al.Measurement Method of IGBT Thermal Resistance Based on Structure Function[J].High Power Converter Technology,2015,(03):39.[doi:10.13889/j.issn.2095-3631.2015.03.009]
[4]夏一帆,王征宇,陈建明,等.基于ACPL-32JT 的电动汽车电机控制器 IGBT 驱动电路设计[J].控制与信息技术(原大功率变流技术),2015,(03):54.[doi:10.13889/j.issn.2095-3631.2015.03.013]
 XIA Yifan,WANG Zhengyu,CHEN Jianming,et al.Design of IGBT Drive Circuit for the Motor Controller of Electric Vehicle Based on ACPL-32JT[J].High Power Converter Technology,2015,(03):54.[doi:10.13889/j.issn.2095-3631.2015.03.013]
[5]吴义伯,戴小平,王彦刚,等.IGBT 功率模块封装中先进互连技术研究进展[J].控制与信息技术(原大功率变流技术),2015,(02):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
 WU Yibo,DAI Xiaoping,WANG Yangang,et al.State-of-the-art Progress of Advanced InterconnectionTechnology for IGBT Power Module Packaging[J].High Power Converter Technology,2015,(03):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
[6]李 云,朱世武,吴春冬,等.电动汽车电机控制器的发展[J].控制与信息技术(原大功率变流技术),2015,(02):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
 LI Yun,ZHU Shiwu,WU Chundong,et al.Development of the Motor Control Unit for Electric Vehicle[J].High Power Converter Technology,2015,(03):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
[7]焦明亮,李 云,朱世武,等.IGBT 门极驱动技术现状和发展趋势[J].控制与信息技术(原大功率变流技术),2015,(02):18.[doi:10.13889/j.issn.2095-3631.2015.02.004]
 JIAO Mingliang,LI Yun,ZHU Shiwu,et al.Status and Trend of IGBT Gate Drive Technology[J].High Power Converter Technology,2015,(03):18.[doi:10.13889/j.issn.2095-3631.2015.02.004]
[8]赵振波,王 恒.三电平NPC 拓扑结构中功率IGBT 器件的应用和分析[J].控制与信息技术(原大功率变流技术),2015,(02):24.[doi:10.13889/j.issn.2095-3631.2015.02.005]
 ZHAO Zhenbo,WANG Heng.Application and Analysis of Power IGBT Device in Three-level NPC Topology[J].High Power Converter Technology,2015,(03):24.[doi:10.13889/j.issn.2095-3631.2015.02.005]
[9]马龙昌,张东辉,杨 光,等.IGBT 并联应用技术研究[J].控制与信息技术(原大功率变流技术),2015,(02):35.[doi:10.13889/j.issn.2095-3631.2015.02.007]
 MA Longchang,ZHANG Donghui,YANG Guang,et al.Research on the IGBT Paralleling Application[J].High Power Converter Technology,2015,(03):35.[doi:10.13889/j.issn.2095-3631.2015.02.007]
[10]王晓元,王 雄,王幸智,等.大功率模块用水冷散热器的数值模拟与试验研究[J].控制与信息技术(原大功率变流技术),2015,(02):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
 WANG Xiaoyuan,WANG Xiong,WANG Xingzhi,et al.Numerical Simulation and Experimental Study of the Water-cooled Radiator for High Power Module[J].High Power Converter Technology,2015,(03):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
[11]丁杰,何多昌,唐玉兔.翅柱式水冷散热器的性能研究[J].控制与信息技术(原大功率变流技术),2013,(02):32.[doi:10.13889/j.issn.2095-3631.2013.02.007]
 DING Jie,HE Duo-chang,TANG Yu-tu.Performance Analysis of Water-cooling Radiator with Pin-fins[J].High Power Converter Technology,2013,(03):32.[doi:10.13889/j.issn.2095-3631.2013.02.007]
[12]丁杰,唐玉兔,忻力,等.网格尺寸对IGBT水冷散热器仿真结果的影响[J].控制与信息技术(原大功率变流技术),2012,(06):26.[doi:10.13889/j.issn.2095-3631.2012.06.010]
 DINGJie,TANGYu-tu,XINLi,et al.Effects of Mesh Size on Simulation Results of Water-Cooling Radiator for IGBT Module[J].High Power Converter Technology,2012,(03):26.[doi:10.13889/j.issn.2095-3631.2012.06.010]

更新日期/Last Update: 2015-06-30