[1]吴义伯,戴小平,王彦刚,等.IGBT 功率模块封装中先进互连技术研究进展[J].控制与信息技术(原大功率变流技术),2015,(02):6-11.[doi:10.13889/j.issn.2095-3631.2015.02.002]
 WU Yibo,DAI Xiaoping,WANG Yangang,et al.State-of-the-art Progress of Advanced InterconnectionTechnology for IGBT Power Module Packaging[J].High Power Converter Technology,2015,(02):6-11.[doi:10.13889/j.issn.2095-3631.2015.02.002]
点击复制

IGBT 功率模块封装中先进互连技术研究进展()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2015年02期
页码:
6-11
栏目:
综述·评论
出版日期:
2015-04-05

文章信息/Info

Title:
State-of-the-art Progress of Advanced InterconnectionTechnology for IGBT Power Module Packaging
文章编号:
2095-3631(2015)02-0006-06
作者:
吴义伯戴小平王彦刚李道会刘国友
株洲南车时代电气股份有限公司 功率半导体研发中心(Lincoln 分中心)
Author(s):
WU Yibo DAI Xiaoping WANG Yangang LI Daohui LIU Guoyou
Power Semiconductor R&D Center (Lincoln), Zhuzhou CSR Times Electric Co., Ltd.,
关键词:
IGBT功率模块封装技术互连技术引线键合贴片焊接功率端子
Keywords:
IGBT power module packaging technology interconnection technology wire bonding die attach welding power terminals
分类号:
TN303
DOI:
10.13889/j.issn.2095-3631.2015.02.002
文献标志码:
A
摘要:
随着新一代IGBT 芯片结温及功率密度的提高,对功率电子模块及其封装技术的要求也越来越高。文章主要介绍了功率电子模块先进封装互连技术的最新发展趋势,重点比较了芯片表面互连、贴片焊接互连、导电端子引出互连等3 种先进互连技术及其封装工艺的优缺点,讨论了功率电子模块封装及互连技术所面临的问题与挑战。
Abstract:
With the development of next-generation IGBT chips towards higher junction temperature and power density, much greater is the demand to power electronic module and its packaging technology. Hence, state-of-the-art progress of advanced interconnection technology in power IGBT module packaging was reviewed. Three kinds of interconnection technologies were highlighted, such as die attach, wirebonding on the chips and power terminal lead-out. In addition, the subsidiary processes of these three interconnection technologies were also compared in details according to their features. As a result, the existing problems and challenges of power electronic module packaging and interconnection technologies in the future were discussed with respect to their applicability for power electronic packaging.

参考文献/References:

[1]Hower P L, Pendharkar S, Efland T. Current Status and Future Trends in Silicon Power Device[C]//IEEE International Electron Devices Meeting (IEDM), 2010:308-311.
[2]Avron A. Analysis of innovative technologies and packaging trends for power modules[C]// 7th International Conference on integrated power electronics systems (CIPS), 2012:27-37.
[3]Lutz J. Packaging and reliability of power modules[C]//CIPS,2014: 17-24.
[4]Beckedahl P. Advanced Power Module Packaging for Increased Operation Temperature and Power Density[C]//15th International Power Electronics and Motion Control Conference (EPE-PEMC2012), 2012:4-1.
[5]Storasta L, Corvasce C, Andenna M, et al. Enhanced Trench IGBTs and Field Charge Controlled Diode[J]. Bodo’s Power Systems,2014(12):24-28.
[6]Lutz J, Schlangenotto H, Scheuermann U, et al. Semiconductor power devices–Physics, Characteristics, Reliability[M]. New York:Springer,2011.
[7]Wang Y, Wu Y, Jones S, et al. Challenges and Trends of High Power IGBT Module Packaging[C]//IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific),2014: 1-7.
[8]Wu Y B, Liu G Y, Xu N H, et al. Thermal Resistance Analysis and Simulation of IGBT Module with High Power Density[J].Applied Mechanics and Materials, 2013(303-306):1902-1907.
[9]Schmidt R, König C, Prenosil P. Novel wire bond material for advanced power module packages[J]. Microelectronics Reliability, 2012(52):2283-2288.
[10]徐凝华,吴义伯,刘国友,等. 混合动力/ 电动汽车用IGBT 功率模块的最新封装技术[J]. 大功率变流技术,2013(1):1-6.
[11]Wang Y, Jones S, Chamund D, et al. Lifetime modelling of IGBT modules subjected to power cycling tests[C]// PCIM, 2013:802-809.
[12]Siepe D, Bayerer R, Roth R. The future of wire bonding is? Wire bonding![C]//CIPS, 2010.
[13]Ling J, Xu T, Luechinger C, et al. Large-Cu-wire wedge bonding on wafers with Cu pad metallization[C]// PCIM, 2012: 767-775.
[14]Herold C, Hensler A, Lutz J, et al. Power cycling capability of new technologies in power modules for hybrid electric vehicles[C]//PCIM,2012:486-493.
[15]Schmidt R, Scheuermann U, Milke E. Al-Clad Cu wire bonds multiply power cycling lifetime of advanced power modules[C]//PCIM, 2012:776-783.
[16]Tan C E, Liong J Y, Dimatira J, et al. Breakthrough development of ultimate ultra-fine pitch process with gold wire & copper wire in QFN packages[C]//16th IEEE Electronics Packaging Technology Conference (EPTC), 2014:107-111.
[17]Aydin B, Dugal F, Tsyplakov E, et al. IGBT Press-Packs for the Industrial Market[J]. Power Electronics Europe, 2011,(7):19-21.
[18]Liang Z X, Ning P, Wang F, et al. Reducing Parasitic Electrical Parameters with a Planar Interconnection Packaging Structure[C]//CIPS, 2012.
[19]Johnson C M, Castellazzi A, Skuriat R, et al. Integrated High Power Modules[C]// CIPS, 2012.
[20]Ishihara M, Miyamoto N, Hiyama K, et al. New compact-package power modules for electric and hybrid vehicles (J1-Series)[C]//PCIM, 2014:1093-1097.
[21]Grabhoff T. SKiN technology for ultra compact power modules[J].Bodo’s Power Systems, 2012(9): 28-30.
[22]Scheuermann U. Reliability of planar SKiN interconnecttechnology[C]//CIPS, 2012:464-471.
[23]Scheuermann U. Basic interconnection technologies: wire bonding, soldering, pressure contact[C]//ECPE tutorial Power electronics packaging. Birmingham, 2012.
[24]Guth K, Hille F, Umbach F, et al. New assembly and interconnects beyond sintering methods[C]//PCIM, 2010:232-237.
[25]Manikam V R, Cheong K Y. Die Attach Materials for High Temperature Applications: A Review[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2011,1(4): 457-478.
[26]Guth K, Oeschler N, Boewer L, et al. New assembly and interconnects for power modules[C]//CIPS, 2012:380-384.
[27]Yoon S W, Glover M D, Shiozaki K. Nickel–Tin Transient Liquid Phase Bonding Toward High-Temperature Operational Power Electronics in Electrified Vehicles[J]. IEEE Transactions on Power Electronics, 2013, 28(5):2448-2456.
[28]Scheuermann U, Schmidt R. A new lifetime model for advanced power modules with sintered chips and optimized Al wire bonds[C]// PCIM, 2013:810-817.
[29]Zhao Yimin, Wu Yibo, Evans K, et al. Evaluation of Ag sintering die attach for high temperature power module applications[C]//IEEE International Conference on Electronic Packaging Technology (ICEPT 2014), 2014: 200-204.
[30]Wu Yibo, Zhao Yimin, Steve J, et al. Applications of low temperature sintering technology as die attach for high temperature power modules[C]//IEEE International Conference on Electronic Packaging Technology (ICEPT 2014), 2014:452-457.
[31]Masson A, Sabbah W, Riva R, et al. Die attach using silver sintering: practical implementation and analysis[J]. European Journal of Electrical Engineering, 2013(16):293-305.
[32]Siow K S. Are Sintered Silver Joints Ready for Use as Interconnect Material in Microelectronic Packaging[J]. Journal of Electronic Materials, 2014, 43(4):947-961.
[33]Nishimura Y, Kido K, Momose F, et al. Development of Ultrasonic Welding for IGBT Module Structure[C]// Proc. of 22nd Int.Symp. Power Semiconductor Devices & ICs (ISPSD), 2010: 293-296.
[34]Kido K, Momose F, Nishimura Y, et al. Development of Copper-Copper Bonding by Ultrasonic Welding for IGBT Modules[C]//International Electronic Manufacturing Technology Conference,2010: 1-5.
[35]Hauser S. SKiM IGBT modules technical explanations[R]. 2013.
[36]International Rectifier Unveils Innovative New Die on Leadframe (DOL) Power Packaging Technology for Automotive Subsystems[EB/OL]. [2014-02-11]. http://www.irf.com/pressroom/pressreleases/nr041019.html.

相似文献/References:

[1]蒋云富,黄 南,袁 勇,等.集成式IGBT 功率组件的现状及发展趋势[J].控制与信息技术(原大功率变流技术),2015,(03):1.[doi:10.13889/j.issn.2095-3631.2015.03.001]
 JIANG Yunfu,HUANG Nan,YUAN Yong,et al.Status and Development Trends of Integrated IGBT Power Assembly[J].High Power Converter Technology,2015,(02):1.[doi:10.13889/j.issn.2095-3631.2015.03.001]
[2]丁 杰,张 平.电机控制器用IGBT 水冷散热器温升实验与热仿真[J].控制与信息技术(原大功率变流技术),2015,(03):23.[doi:10.13889/j.issn.2095-3631.2015.03.006]
 DING Jie,ZHANG Ping.Temperature-rise Test and Thermal Simulation for IGBT Water-cooled Radiator of Motor Controller[J].High Power Converter Technology,2015,(02):23.[doi:10.13889/j.issn.2095-3631.2015.03.006]
[3]黄 南,王世平,宋自珍.兆瓦级功率组件IGBT 失效研究[J].控制与信息技术(原大功率变流技术),2015,(03):35.[doi:10.13889/j.issn.2095-3631.2015.03.008]
 HUANG Nan,WANG Shiping,SONG Zizhen.Study of the IGBT Failure in Megawatt Power Assembly[J].High Power Converter Technology,2015,(02):35.[doi:10.13889/j.issn.2095-3631.2015.03.008]
[4]奉 琴,李世平,陈 彦,等.基于结构函数的大功率IGBT 热阻测量方法[J].控制与信息技术(原大功率变流技术),2015,(03):39.[doi:10.13889/j.issn.2095-3631.2015.03.009]
 FENG Qin,LI Shiping,CHEN Yan,et al.Measurement Method of IGBT Thermal Resistance Based on Structure Function[J].High Power Converter Technology,2015,(02):39.[doi:10.13889/j.issn.2095-3631.2015.03.009]
[5]夏一帆,王征宇,陈建明,等.基于ACPL-32JT 的电动汽车电机控制器 IGBT 驱动电路设计[J].控制与信息技术(原大功率变流技术),2015,(03):54.[doi:10.13889/j.issn.2095-3631.2015.03.013]
 XIA Yifan,WANG Zhengyu,CHEN Jianming,et al.Design of IGBT Drive Circuit for the Motor Controller of Electric Vehicle Based on ACPL-32JT[J].High Power Converter Technology,2015,(02):54.[doi:10.13889/j.issn.2095-3631.2015.03.013]
[6]李 云,朱世武,吴春冬,等.电动汽车电机控制器的发展[J].控制与信息技术(原大功率变流技术),2015,(02):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
 LI Yun,ZHU Shiwu,WU Chundong,et al.Development of the Motor Control Unit for Electric Vehicle[J].High Power Converter Technology,2015,(02):12.[doi:10.13889/j.issn.2095-3631.2015.02.003]
[7]焦明亮,李 云,朱世武,等.IGBT 门极驱动技术现状和发展趋势[J].控制与信息技术(原大功率变流技术),2015,(02):18.[doi:10.13889/j.issn.2095-3631.2015.02.004]
 JIAO Mingliang,LI Yun,ZHU Shiwu,et al.Status and Trend of IGBT Gate Drive Technology[J].High Power Converter Technology,2015,(02):18.[doi:10.13889/j.issn.2095-3631.2015.02.004]
[8]赵振波,王 恒.三电平NPC 拓扑结构中功率IGBT 器件的应用和分析[J].控制与信息技术(原大功率变流技术),2015,(02):24.[doi:10.13889/j.issn.2095-3631.2015.02.005]
 ZHAO Zhenbo,WANG Heng.Application and Analysis of Power IGBT Device in Three-level NPC Topology[J].High Power Converter Technology,2015,(02):24.[doi:10.13889/j.issn.2095-3631.2015.02.005]
[9]马龙昌,张东辉,杨 光,等.IGBT 并联应用技术研究[J].控制与信息技术(原大功率变流技术),2015,(02):35.[doi:10.13889/j.issn.2095-3631.2015.02.007]
 MA Longchang,ZHANG Donghui,YANG Guang,et al.Research on the IGBT Paralleling Application[J].High Power Converter Technology,2015,(02):35.[doi:10.13889/j.issn.2095-3631.2015.02.007]
[10]王晓元,王 雄,王幸智,等.大功率模块用水冷散热器的数值模拟与试验研究[J].控制与信息技术(原大功率变流技术),2015,(02):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
 WANG Xiaoyuan,WANG Xiong,WANG Xingzhi,et al.Numerical Simulation and Experimental Study of the Water-cooled Radiator for High Power Module[J].High Power Converter Technology,2015,(02):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]

备注/Memo

备注/Memo:
收稿日期:2015-02-11
作者简介:吴义伯(1979-),男,博士,高级工程师,主要从事大功率半导体模块的封装结构设计及仿真研究工作。
更新日期/Last Update: 2016-01-06