[1]贺波勇.环月极轨空间站地月转移轨道建模与优化[J].控制与信息技术(原大功率变流技术),2019,(04):65-69.[doi:10.13889/j.issn.2096-5427.2019.04.011]
 HE Boyong.Modeling and Optimization of Trans-lunar Orbit for Lunar Polar Station[J].High Power Converter Technology,2019,(04):65-69.[doi:10.13889/j.issn.2096-5427.2019.04.011]
点击复制

环月极轨空间站地月转移轨道建模与优化()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2019年04期
页码:
65-69
栏目:
“中国飞行力学学术年会”专刊
出版日期:
2019-08-05

文章信息/Info

Title:
Modeling and Optimization of Trans-lunar Orbit for Lunar Polar Station
文章编号:
2096-5427(2019)04-0065-05
作者:
贺波勇
(西安卫星测控中心 宇航动力学国家重点实验室,陕西 西安 710043)
Author(s):
HE Boyong
( State Key Laboratory of Astronautics Dynamics, Xi’an Satellite Control Center, Xi’an , Shaanxi 710043, China )
关键词:
轨迹优化环月极轨空间站地月转移轨道逆向数值积分序列二次规划快速迭代燃料最优解
Keywords:
trajectory optimization lunar polar station trans-lunar orbit reverse numerical integration sequential quadratic programming(SQP) fast iterative algorithm optimal-fuel solution
分类号:
V412.4
DOI:
10.13889/j.issn.2096-5427.2019.04.011
文献标志码:
A
摘要:
环月极轨空间站是未来私人月球旅游和全月面到达的有效途径之一,空间站补给任务的完成需要高精度两脉冲燃料最优转移轨道设计建模与求解方法。文章基于逆向数值积分思路提出了一种两脉冲地月转移轨道快速设计模型,设计了能使用通用非线性规划算法计算的轨道优化搜索设计模型框架,最后利用黄金分割策略来快速计算燃料最优轨道解。仿真算例分析了两脉冲地月转移轨道近月制动点位置与转移时长的特性关系,并验证了所提方法的正确性和有效性。
Abstract:
Lunar polar station is one of the effective ways for private lunar tourism and lunar surface global access mission in the future, the station resupply mission requires a modeling and optimization method for a two-impulse trans-lunar orbit with high-precision dynamics model. It established a model of fast designing a two-impulse trans-lunar orbit by backward numerical integration, proposed an optimal framework which can be calculated by general nonlinear programming algorithm for solving the trans-lunar orbit and used a golden section strategy to calculate the optimal-fuel solution. Characteristic relationship between the perilune position for braking into a low circular lunar orbit and the duration of transfer was analyzed, and the simulation results demonstrated the validity of the proposed method.

参考文献/References:

[1] COLAPRETE A, SCHULTZ P, HELDMANN J, et al. Detection of water in the LCROSS ejecta plume[J]. Science, 2010, 330(6003): 463-468.
[2] MITROFANOV I G, SANIN A B, BOYNTON W V, et al. Hydrogen mapping of the lunar south pole using the LRO neutron detector experiment LEND [J]. Science, 2010, 330(6003): 483-486.
 [3] SRIDHARAN R, AHMED S M, DAS T P, et al. Direct evidence for water in the sunlit lunar ambience from CHACE on MIP of Chandrayaan[J]. Planetary and Space Science, 2010, 58(6): 947–950.
[4] DAVIS J. Some snark (and details!) about NASA’s proposed lunar space station[EB/OL]. (2018-02-26)[2019-07-21]. http://www.planetary.org/blogs/jason-davis/2018/20180226-lop-g-snark-details.html.
 [5] HOELKER R F, BRAUD N T. Survey and classification of earth-moon trajectories based on newly discovered properties[C]//AIAA Summer meeting. Los Angeles, USA, 1963: 17-20.
 [6] BURKE J D. Lunar polar orbiter: A global survey of the Moon[J].Acta Astronautica, 1977, 4(4): 907-920.
[7] FRANCISCO J A, THOMAS A D. Lunar Prospector Mission[R]. Handbook LMMA /p458481, 1998.
 [8] BIESBROEK B, JANIN G. Ways to the Moon[R]. ESA Bull 103, 92, 2000.
[9] MENGALI G, QUARTA A A. Optimization of biimpulsive trajectories in the Earth-Moon restricted three-body system [J]. Journal of guidance, control, and dynamics, 2005, 28(2): 209-216.
[10] ASSADIAN N, POURTAKDOUST S H. Multi-objective genetic optimization of Earth-Moon trajectories in the restricted four-body problem [J]. Advance in space research, 2010, 45(3): 398-409.
[11] GRIESEMER P R, OCAMPO C, AND COOLEY D. S. Optimal ballistcally captures Earth-Moon transfers [J]. Acta Astronautica, 2012, 76(7): 1-12.
 [12] PICOT G. Shooting and numerical continuation methods for computing time-minimal and energy-minimal trajectories in the Earth-Moon system using low propulsion [J]. Discrete and Continuous Dynamical System-Series B, 2012, 17(1): 245-269.
[13] TOPPUTO F. On optimal two-impulse Earth–Moon transfers in a four-body model [J]. Celestial mechanics and dynamical astronomy, 2013, 117(3): 279-313.
[14] SALAZAR F T, MACAU E N, WINTER O C. Pareto frontier for the time-energy cost vector to an earth-moon transfer orbit using the patched-conic approximation [J]. Computational & applied mathematics, 2014, 34(2): 1-15.
[15] HE B Y, LI H Y, ZHANG B. Analysis of transfer orbit deviation propagation mechanism and robust design for manned lunar landing [J]. Acta Phys. Sin, 2013, 62(19): 91-98.
 [16] YAN H, GONG Q. High-accuracy trajectory optimization for a trans-earth lunar mission [J]. Journal of guidance, control, and dynamics, 2011, 34(4): 1219-1227.
[17] YIM S Y, BAOYIN H X. High latitude landing circumlunar free return trajectory design [J]. Aircraft engineering and aerospace technology, 2015, 87(4): 380-391.
[18] PENG Q B, SHEN H X, LI H Y. Free return orbit design and characteristics analysis for manned lunar mission [J]. SCIENCE CHINA Technological Sciences, 2011, 54(12): 3243-3250.
 [19] ZHOU W Y. Analysis of the characteristics of the transfer trajectory of lunar explorer [J]. Chinese journal of space science, 2004, 24(5): 354-359.
[20] ZHANG L, XIE J F, TANG G S. Method of mission trajectory design for circumlunar free return flight [J]. Journal of astronautics, 2014, 35(12): 1388-1395.
 [21] GILL P E, MURRAY W, SAUNDER M A. User guide for SNOPT 7: Software for large-scale linear and quadratic programming [EB/OL]. (2018-01-26)[2019-07-21].https://web.stanford.edu/group/SOL/snopt.html.
[22] BERRY R. Launch window and trans-lunar orbit, lunar orbit, and trans-earth orbit planning and control for the Apollo 11 lunar landing mission[C] // 8th Aerospace Sciences Meeting, AIAA 70-0024. New York, USA,1970.

相似文献/References:

[1]廖宇新,李 军,李晓栋.高超声速滑翔飞行器再入段闭环最优反馈制导方法[J].控制与信息技术(原大功率变流技术),2018,(06):78.[doi:10.13889/j.issn.2096-5427.2018.06.013]
 LIAO Yuxin,LI Jun,LI Xiaodong.A Closed-loop Optimal Feedback Guidance Method of Reentry Phase for Hypersonic Glide Vehicle[J].High Power Converter Technology,2018,(04):78.[doi:10.13889/j.issn.2096-5427.2018.06.013]
[2]谢 磊,张洪波,周 祥,等.基于组合算法的运载火箭一子级动力垂直回收轨迹规划[J].控制与信息技术(原大功率变流技术),2019,(04):79.[doi:10.13889/j.issn.2096-5427.2019.04.013]
 XIE Lei,ZHANG Hongbo,ZHOU Xiang,et al.Trajectory Planning of First Stage Rocket Powered Vertical Recovery Using a Hybrid Optimization Method[J].High Power Converter Technology,2019,(04):79.[doi:10.13889/j.issn.2096-5427.2019.04.013]
[3]陈耀琦,周 维,张维刚. 基于动态规划的电动汽车最佳驾驶决策分析[J].控制与信息技术(原大功率变流技术),2019,(06):1.[doi:10.13889/j.issn.2096-5427.2019.06.600]
 CHEN Yaoqi,ZHOU Wei,ZHANG Weigang. Analysis of the Best Driving Decision of Electric Vehicles Based on Dynamic Programming[J].High Power Converter Technology,2019,(04):1.[doi:10.13889/j.issn.2096-5427.2019.06.600]

备注/Memo

备注/Memo:
收稿日期:2019-05-15
作者简介:贺波勇(1989—),男,博士,助理研究员,主要研究方向为航天器轨道动力学与控制。
基金项目:国家自然科学基金(11702330);国防科技创新特区项目
更新日期/Last Update: 2019-08-20