[1]王思远,韩松来,任星宇,等.MEMS惯性导航技术及其应用与展望[J].控制与信息技术,2018,(06):21-26.[doi:10.13889/j.issn.2096-5427.2018.06.004]
 WANG Siyuan,HAN Songlai,REN Xingyu,et al.MEMS Inertial Navigation Technology and Its Application and Prospect[J].High Power Converter Technology,2018,(06):21-26.[doi:10.13889/j.issn.2096-5427.2018.06.004]
点击复制

MEMS惯性导航技术及其应用与展望()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2018年06期
页码:
21-26
栏目:
综述·评论
出版日期:
2018-12-05

文章信息/Info

Title:
MEMS Inertial Navigation Technology and Its Application and Prospect
文章编号:
2096-5427(2018)06-0021-06
作者:
王思远韩松来任星宇罗世林
(中南大学 航空航天学院, 湖南 长沙 410083)
Author(s):
WANG Siyuan HAN Songlai REN Xingyu LUO Shilin
( School of Aeronautics and Astronautics, Central South University, Changsha, Hunan 410083, China )
关键词:
MEMS惯性导航 无人系统 智能自主误差补偿
Keywords:
MEMS inertial navigation unmanned system intelligent autonomy error compensation
分类号:
V448.23
DOI:
10.13889/j.issn.2096-5427.2018.06.004
文献标志码:
A
摘要:
基于微机电系统(micro-electro-mechanical system, MEMS)惯性传感器的MEMS惯性导航技术是近年来惯性导航领域的研究热点和未来主要发展方向之一,也是无人系统自主导航进而实现智能自主控制的一项关键技术。文章概述了MEMS惯性传感器的分类以及国内外发展概况,介绍了MEMS惯性导航的两项关键技术——MEMS惯性传感器的误差补偿技术和基于MEMS惯性导航的组合导航算法,阐述了MEMS惯性导航技术在无人机、无人车、无人船及机器人等代表性无人系统中的应用,最后展望了MEMS惯性导航技术的发展和应用前景。
Abstract:
MEMS inertial navigation technology based on micro-electro-mechanical system (MEMS) inertial sensors is a research hotspot in recent years and one of the main future development directions in the field of inertial navigation. It is also a key technology for autonomous navigation of unmanned systems to realize intelligent autonomous control. In this paper, the classification of MEMS inertial sensors and the overview of domestic and foreign development were introduced. Then, two key technologies of MEMS inertial navigation-- the error compensation technology of MEMS inertial sensors and the integrated navigation algorithm based on MEMS inertial navigation were described. Furthermore, the applications of MEMS inertial navigation technology in representative unmanned systems such as unmanned aerial vehicle, unmanned ground vehicle, unmanned ship and robot were summarized. Finally, the development and application prospects of MEMS inertial navigation technology were forecasted.

参考文献/References:

[1]齐广峰,吕军锋. MEMS惯性技术的发展及应用[J]. 电子设计工程,2015(1):87-89.
QI G F,LYU J F. Evolution and application of MEMS inertial technology[J]. Electronic Design Engineering, 2015(1):87-89.
[2]周红进,钟云海,易成涛. MEMS惯性导航传感器[J]. 舰船科学技术,2014(1):115-121.
ZHOU H J, ZHONG Y H, YI C T. MEMS inertial navigation sensors[J]. Ship Science aad Technology, 2014(1):115-121.
[3]范树新,耿振亚,聂丽梅. MEMS压阻式加速度传感器的研究进展[J]. 采矿技术,2008,8(4):120-121.
[4]肖应超. MEMS传感器发展现状与应用[J]. 中国高新技术企业,2016(35):46-47.
[5]张程浩. 一种MEMS加速度计的动力学特性测试研究[D]. 北京:北京工业大学,2017.
[6]李园晴,何海洋. 微机械加速度计发展及其在制导武器中的应用[J]. 科技经济市场,2013(4):3-5.
[7]袁保伦. 四频激光陀螺旋转式惯导系统研究[D]. 长沙:国防科学技术大学,2007.
[8]ZHANG Z X, FENG L H, SUN Y N. Temperature Modeling and Compensation of Double H Quartz Tuning Fork Gyroscope[J]. Procedia Engineering, 2011, 15(1):752-756.
[9]过润秋,郑晓东,王成. 加速度计静态温度模型辨识及温度补偿方法研究[J]. 西安电子科技大学学报(自然科学版),2007,34(3):438-442.
GUO R Q, ZHENG X D, WANG C. Study of the identification for the static temperature model and the method for compensating temperature of the accelerometer[J]. Journal of Xidian University, 2007, 34(3):438-442.
[10]张鹏飞,王宇,龙兴武,等. 加速度计温度补偿模型的研究[J]. 传感技术学报,2007,20(5):1012-1016.
 ZHANG P F, WANG Y, LONG X W, et al. Research on Temperature Compensating Model for Accelerometer[J] Chinese Journal of Sensors and Actuators, 2007, 20(5):1012-1016.
[11]张宇飞,屈建龙,宋超,等. 石英挠性加速度计温度建模和补偿[J]. 中国惯性技术学报,2009,17(3):356-359.
ZHANG Y F, QU J L, SONG C, et al. Temperature modeling and compensation of quartzose flexible accelerometer[J]. Journal of Chinese Inertial Technology, 2009, 17(3):356-359.
[12]翁海娜,胡小毛,裴志,等. 一种新的加速度计温度误差补偿方法[J]. 中国惯性技术学报,2009,17(4):479-482.
WENG H N, HU X M, PEI Z, et al. Novel method of temperature error compensation for accelerometer[J]. Journal of Chinese Inertial Technology, 2009, 17(4):479-482.
[13]张丽杰,常佶. 一种MEMS加速度计温度模型辨识及温度补偿方法[J]. 传感技术学报,2011,24(11):1551-1555.
ZHANG L J, CHANG J. A Method of Identification of Temperature Model and Temperature Compensation for the MEMS Accelerometer[J]. Chinese Journal of Sensors and Actuators, 2011, 24(11):1551-1555.
[14]李园晴,傅山,庞秀枝. 悬丝支承型加速度计静态温度模型辨识及温度补偿方法研究[J]. 计测技术,2012,32(5):13-17.
LI Y Q, FU S, PANG X Z. Study of the Identification for the Static Temperature Model and the Method for Compensating Temperature of Pendulous Accelerometer[J]. Metrology & Measurement Technology, 2012 , 32(5):13-17.
[15]许辰希. 捷联惯导系统惯性器件的温度误差补偿[D]. 合肥:中国科学技术大学,2014.
[16]刘楠,苏言,童鑫,等. 硅微机械陀螺仪温度补偿方法的研究现状[J]. 微纳电子技术,2017,54(6):395-400.
LIU N, SU Y, TONG X, et al. Research Status of Temperature Compensation Methods for Silicon Micro-Electromechanical Gyroscopes[J]. Micronanoeletronic Technology, 2017, 54(6):395-400.
[17]陈哲. 捷联惯导系统原理[M]. 北京:宇航出版社,1986.
[18]BEITER S, POQUETTE R, FILIPO B S. Precision hybrid navigation system for varied marine applications[J]. IEEE Position Location & Navigation Symposium, 1998:316-323.
[19]SANDERS G A. Fiber optic gyros for space, marine, and aviation applications[C]//Proceedings of SPIE. Anniversary Conference, Denver, 1996:61-71.
[20]LAHHAM J I, BRAZELL J R. Acoustic noise reduction in the MK 49 ship’s inertial navigation system (SINS)[C]//Position Location and Navigation Symposium, 1992. Record. 500 Years After Columbus-Navigation Challenges of Tomorrow. IEEE PLANS’92. IEEE. Monterey, USA:IEEE, 2002:32-39.
[21]袁保伦,饶谷音. 光学陀螺旋转惯导系统原理探讨[J]. 国防科大大学学报,2006,28(6):80-84.
YUAN B L, RAO G Y. On the Theory of Optical Gyro Rotating Inertial Navigation System[J]. Journal of National University of Defense Technology, 2006, 28(6):80-84.
[22]王学运,吕妍红,王玮,等. MEMS器件捷联惯导系统旋转调制技术[J]. 东北大学学报(自然科学版),2014,35(4):494-498.
WANG X Y, LYU Y H, WANG W, et al. Rotation Modulation for Strap-Down Inertial Navigation System Based on MEMS Sensors[J]. Journal of Northeastern University(Natural Science), 2014, 35(4):494-498.
[23]徐文佳. 单轴旋转式光纤惯导系统误差调制技术及试验研究[D]. 哈尔滨:哈尔滨工程大学,2014.
[24]刘毅. 光纤惯组单轴旋转调制模式及对准方法研究[D]. 哈尔滨:哈尔滨工业大学,2015.
[25]陈曦. 基于MEMS惯性传感器的高精度姿态测量关键技术研究[D]. 杭州:浙江大学,2014.
[26]秦雅. 基于车辆模型辅助的旋转微惯性自主导航技术[D]. 南京:南京航空航天大学,2017.
[27]王振桓,陈希军,曾庆双. 基于导航坐标系的捷联惯导系统旋转调制分析[J]. 哈尔滨工程大学学报,2011,32(7):921-926.
WANG Z H, CHEN X J, ZENG Q S. Ship’s inertial navigation system rotating modulation based on navigation coordinates[J]. Journal of Harbin Engineering University, 2011, 32(7):921-926.
[28]刘锡祥, 徐晓苏, 陈臣, 等. 基于单轴旋转组合的捷联惯导双轴旋转调制算法设计[J]. 中国惯性技术学报,2011,19(4):379-382.
LIU X X, XU X S, CHEN C, et al. Rotation modulation algorithm design for SINS based on integration of single-axis rotations[J]. Journal of Chinese Inertial Technology, 2011, 19(4):379-382.
[29]任亚飞,柯熙政. 基于阿伦方差的微机电陀螺误差建模及其粒子滤波[J]. 中国计量学院学报,2009,20(2):102-106.
REN Y F, KE X Z. MEMS error modeling based on Allan variance for particle filtering[J]. Journal of China University of Metrology, 2009, 20(2):102-106.
[30]付梦印,邓志红,张继伟. Kalman 滤波理论及其在导航系统中的应用[M]. 北京:科学出版社,2003.
[31]史小杰,芦利斌,金国栋,等. 基于改进互补滤波的小型无人机MEMS姿态解算[J]. 信息技术,2018(6):49-52.
SHI X J, LU L B, JIN G D, et al. Small UAV MEMS attitude algorithm based on the modified complementary filter[J]. Information Technology, 2018(6):49-52.
[32]杜小菁,翟峻仪. 基于MEMS的微型惯性导航技术综述[J]. 飞航导弹,2014(9):77-81.
[33]JIAO L C, YANG S Y, LIU F, et al. Seventy years beyond neural networks:retrospect and prospect[J]. Chinese Journal of Computers, 2016:199-218.
[34]许端,任剡,孙学艳. 基于MEMS技术的无人机导航系统设计与实现[C]//第四届全国信号和智能信息处理与应用学术会议.上海,2010.
[35]ZHANG Q T, TAN Z F, GUO L D. Compensation of temperature drift of MEMS gyroscope using BP neural network[C]// International Conference on Information Engineering & Computer Science. Wuhan, China:IEEE, 2009.
[36]杨芳勋,黄席樾,李建科. 基于模糊神经网络的信息融合技术研究[J]. 自动化与仪器仪表,2009(2):5-7,14.
YANG F X, HUANG X Y, LI J K. The research of information fusion technology based on fuzzy neural network[J]. Automation & Instrumentation, 2009(2):5-7, 14.
[37]左建昌. 机器人化工程机械的超声波避障与惯性导航系统研究[D]. 西安:长安大学,2008.
[38]夏凌楠,张波,王营冠,等. 基于惯性传感器和视觉里程计的机器人定位[J]. 仪器仪表学报,2013,34(1):166-172.
XIA L N, ZHANG B, WANG Y G ,et al. Robot localization algorithm based on inertial sensor and video odometry[J]. Chinese Journal of Scientific Instrument, 2013, 34(1):166-172.
[39]梁丁. 基于MEMS惯性传感器的跌倒检测与预警研究[D]. 大连:大连理工大学,2012.
[40]王琰,汪丰,章文斌,等. 一种基于惯性传感器的帕金森病冻结步态识别方法研究[J]. 临床神经外科杂志,2018(2):90-94.
WANG Y, WANG F, ZHANG W B, et al. Study on method for identifying freezing of gait of Parkinson’s Disease based on inertial sensor[J]. J Clin Neurosurg, 2018(2):90-94.
[41]李辰祥. 基于MEMS行人惯性导航的零速度修正技术研究[D]. 厦门:厦门大学,2014.
[42]张家田,王望,严正国. 基于MEMS传感器的运动轨迹的追踪系统[J]. 现代电子技术,2016,39(12):117-119.
ZHANG J T, WANG W, YAN Z G. Motion trail tracking system based on MEMS sensor[J]. Modern Electronics Technique, 2016, 39(12):117-119.
[43]李启雷,金文光,耿卫东. 基于无线惯性传感器的人体动作捕获方法[J]. 浙江大学学报(工学版),2012,46(2):280-285.
 LI Q L, JIN W G, GENG W D. Human motion capture using wireless inertial sensors[J]. Journal of Zhejiang University(Engineering Science) , 2012, 46(2):280-285.

备注/Memo

备注/Memo:
收稿日期:2018-09-30
作者简介:王思远(1995—),男,硕士研究生,主要研究方向为惯性导航算法。
基金项目:国家自然科学基金(11272349)
更新日期/Last Update: 2018-12-25