[1]王彦刚,等.电动汽车功率模块平面封装技术[J].控制与信息技术(原大功率变流技术),2017,(05):36-41.[doi:10.13889/j.issn.2095-3631.2017.05.005]
 WANG Yangang,LIU Xuyu,et al.Planar Packaging Technology of Power Semiconductor Module for Electric Vehicle[J].High Power Converter Technology,2017,(05):36-41.[doi:10.13889/j.issn.2095-3631.2017.05.005]
点击复制

电动汽车功率模块平面封装技术()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年05期
页码:
36-41
栏目:
“IGBT联盟学术会议”专刊
出版日期:
2017-10-05

文章信息/Info

Title:
Planar Packaging Technology of Power Semiconductor Module for Electric Vehicle
文章编号:
2095-3631(2017)05-0036-06
作者:
王彦刚 1 2 刘谞瑜3戴小平1 2 吴义伯1 2 彭勇殿1 2刘国友1 2
(1. 新型功率半导体器件国家重点实验室,湖南株洲 412001; 2. 株洲中车时代电气股份有限公司,湖南株洲 412001;3. 曼彻斯特大学电气与电子工程学院,英国 曼彻斯特 M13 9PL)
Author(s):
WANG Yangang 1 2 LIU Xuyu 3 DAI Xiaoping 1 2 WU Yibo 1 2 PENG Yongdian 1 2 LIU Guoyou 1 2
(1. State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou, Hunan 412001, China; 2. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China; 3. School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom)
关键词:
混合及纯电动汽车IGBT 模块平面封装技术功率控制单元可靠性
Keywords:
hybrid and electric vehicle IGBT module planar packaging technology power control unit reliability
分类号:
TN303;U469.72
DOI:
10.13889/j.issn.2095-3631.2017.05.005
文献标志码:
A
摘要:
讨论了目前电动汽车用功率模块典型的平面封装技术;介绍了汽车功率系统对功率模块的性能要求,以及汽车模块封装面临的挑战和应对措施;讨论了当前典型的采用平面封装技术的电动汽车功率模块,分析其结构和封装技术等;并展望了汽车级平面模块封装技术的下一步发展方向。
Abstract:
In this paper, the typical planar packaging technologies of HEV/EV power semiconductor module were presented. Firstly, the functionality and performance requirements for power module by automotive power system, as well as the challenges and mitigation strategy of automotive power module packaging, were discussed. The typical state-of-the-art HEV/EV modules assembled by planar technology were reviewed and analyzed in terms of the structure and packaging technologies. Finally, the outlook of next generation key packaging technologies of planar automotive module was proposed.

参考文献/References:

[1] Climate Change and CO2: Automakers publish a comprehensive position paper [EB/OL].(2008-05-31)[2017-08-01].http:// www.oica.net/category/climate-change-and-co2.
[2] Technology Roadmap Electric and plug-in hybrid electric vehicles. International Energy Agency [EB/OL] .(2011-06-30)[2017- 08-01].http://www.iea.org/publications/freepublications/ publication/name.3851.en.html.
[3] NOGGIA P. Global Passenger Car Powertrain and Electric Vehicle Market: 2015 Outlook[EB/OL].(2015-06-16)[2017-08-01]. http://www.ukintpress-conferences.com/uploads/SPKEX15/Day1_4_ Pietro_Boggia.pdf.
[4] LIANG Z. Status and trend of automotive power packaging[C] //24th Int. Symposium on Power Semiconductor Device & ICs (ISPSD). Bruges: IEEE, 2012:325-331.
[5] KIMURA T, SAITOU R, KUBO K. et al. High-power-density Inverter Technology for Hybrid and Electric Vehicle Applications[J]. Hitachi Review, 2014, 63(2):96-102.
[6] BAYERER R. Higher junction temperature in power modules – a demand from hybrid cars, a potential for the next step increase in power density for various Variable Speed Drives[C]// Int. Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management (PCIM Europe). Nuremberg, 2008.
[7] JOHN R, VERMESAN O, BAYERER R. High temperature power electronics IGBT modules for electrical and hybrid vehicles[C]// IMAPS High Temperature Electronics Network (HiTEN).Oxford, 2009:199-204.
[8] MARZ M, SCHLETZ A, ECHARDT B. et al. Power electronics system integration for electric and hybrid vehicles[C]// 6th International Conference on Integrated Power Electronics Systems (CIPS). Nuremberg, 2010:227-236.
[9] NAGAUNE F, GHARA H, ADACHI S. et al. Small size and high thermal conductivity IGBT module for automotive applications[C] // PCIM Europe. Nuremberg, 2011:785-790.
[10] 吴琪乐. HEV 和EV 电力电子市场蓬勃发展2020 年前可能采用SiC 或GaN 技术[J]. 半导体信息,2011(6):32-33.
[11] WANG Y, DAI X, WU Y. et al. Integrated liquid cooling automotive IGBT module for high temperature coolant application [C]// PCIM Europe. Nuremberg, 2015:1197-1203.
[12] HIGUCHI K, KITAMURA A, ARAI H. et al. An intelligent power module with accuracy control system and direct liquid cooling for hybrid system[C]// PCIM Europe. Nuremberg, 2014:39-46.
[13] SKiM 63/93 IGBT Modules, Technical Explanations[EB/OL]. (2011-07-31)[2017-08-01].http://www.semikron.com/dl/ service-support.
[14]ISHIHARA M, HIYAMA K, YAMADA K. et al. New transfermold power module series for automotive power-train inverters[C]// PCIM Europe. Nuremberg, 2012:1408-1413.
[15]ISHIHARA M, MIYAMOTO N, HIYAMA K. et al. New compactpackage power modules for electric and hybrid vehicles (J1 series) [C]// PCIM Europe. Nuremberg, 2014:1093-1097.
[16]ZHONG Y, MENG J, NING P. et al. Design & Analysis of a novel IGBT package with double-sided cooling[C]// IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia- Pacific). Beijing, 2014:1-6.
[17]WANG Y, LI Y, DAI X. et al. Thermal design of a dual sided cooled power semiconductor module for hybrid and electric vehicles [C]// IEEE Applied Power Electronics Conference and Exposition (APEC). Tampa, 2017:3068-3071.
[18]WANG Y, LI Y, MA Y. et al. Development of High Thermal Performance Automotive Power Module with Dual Sided Cooling Capability[C]// PCIM Europe. Nuremberg, 2017:1-5.
[19]WANG Y, LI Y, WU Y. et al. Mitigation of challenges in automotive power module packaging by dual sided cooling[C]// 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). Karlsruhe, 2016:1-8.
[20]SCHEUERMANN U. Reliability of Planar SKiN Interconnect Technology[C]// CIPS. Nuremberg, 2012:1-8.

相似文献/References:

[1]陈明锋,雷万钧,付翀丽,等.T 型三电平结构SVG 的损耗研究[J].控制与信息技术(原大功率变流技术),2015,(04):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
 CHEN Mingfeng,LEI Wanjun,FU Chongli,et al.Research on the Loss of Three-level T-type Inverter in SVG[J].High Power Converter Technology,2015,(05):56.[doi:10.13889/j.issn.2095-3631.2015.04.011]
[2]王彦刚,戴小平,吴义伯,等.IGBT 模块功率损耗的产生机理、计算及模拟[J].控制与信息技术(原大功率变流技术),2015,(02):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
 WANG Yangang,DAI Xiaoping,WU Yibo,et al.The Mechanism, Calculation and Simulation of Power Loss for IGBT Modules[J].High Power Converter Technology,2015,(05):62.[doi:10.13889/j.issn.2095-3631.2015.02.013]
[3]方 杰,彭勇殿,窦泽春,等.高压IGBT 模块中AlN 衬板的局部放电特性研究[J].控制与信息技术(原大功率变流技术),2015,(05):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
 FANG Jie,PENG Yongdian,DOU Zechun,et al.Research on Partial Discharge Behavior of AlN Substrate in High Voltage IGBT Module[J].High Power Converter Technology,2015,(05):38.[doi:10.13889/j.issn.2095-3631.2015.05.008]
[4]李世平,奉琴,陈彦,等.IGBT模块中续流二极管关断过程失效机理分析[J].控制与信息技术(原大功率变流技术),2014,(05):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
 LI Shiping,FENG Qin,CHEN Yan,et al.Analysis of Turn-off Failure Mechanism for the Freewheeling Diode in IGBT Module[J].High Power Converter Technology,2014,(05):28.[doi:10.13889/j.issn.2095-3631.2014.05.006]
[5]李 寒,曾 雄,徐凝华,等.超声扫描在IGBT 模块质量分析中的应用[J].控制与信息技术(原大功率变流技术),2016,(02):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
 LI Han,ZENG Xiong,XU Ninghua,et al.Application of Acoustic Scanning Technology in Quality Analysis of IGBT Module[J].High Power Converter Technology,2016,(05):30.[doi:10.13889/j.issn.2095-3631.2016.02.007]
[6]文 驰,李保国,熊 辉,等.IGBT 模块杂散电感分析与仿真[J].控制与信息技术(原大功率变流技术),2016,(04):30.[doi:10.13889/j.issn.2095-3631.2016.04.006]
 WEN Chi,LI Baoguo,XIONG Hui,et al.Analysis and Simulation of Stray Inductance of IGBT Module[J].High Power Converter Technology,2016,(05):30.[doi:10.13889/j.issn.2095-3631.2016.04.006]
[7]徐凝华,吴义伯,刘国友,等.混合动力/电动汽车用IGBT功率模块的最新封装技术[J].控制与信息技术(原大功率变流技术),2013,(01):1.[doi:10.13889/j.issn.2095-3631.2013.01.001]
 XU Ning-hua,WU Yi-bo,LIU Guo-you,et al.The Latest Packing Technology for IGBT Module in HEV/EV Application[J].High Power Converter Technology,2013,(05):1.[doi:10.13889/j.issn.2095-3631.2013.01.001]
[8]吴煜东,万正芬,彭勇殿.高压IGBT模块AlN覆铜衬板特性研究[J].控制与信息技术(原大功率变流技术),2012,(05):1.[doi:10.13889/j.issn.2095-3631.2012.05.001]
 WU Yu-dong,WAN Zheng-fen,PENG Yong-dian.The Investigation of Copper Metalized AlN for High Voltage IGBT Module[J].High Power Converter Technology,2012,(05):1.[doi:10.13889/j.issn.2095-3631.2012.05.001]
[9]袁 勇,等.主功率端子压接技术在IGBT 模块高集成设计中的应用研究[J].控制与信息技术(原大功率变流技术),2017,(01):39.[doi:10.13889/j.issn.2095-3631.2017.01.008]
 YUAN Yong,XIONG Hui,et al.Research on Pressure-contact Technology of Power Terminals for the Design of High-integration IGBT Module[J].High Power Converter Technology,2017,(05):39.[doi:10.13889/j.issn.2095-3631.2017.01.008]
[10]常桂钦,等.基板拱度类型对IGBT 模块应力的影响[J].控制与信息技术(原大功率变流技术),2017,(01):45.[doi:10.13889/j.issn.2095-3631.2017.01.009]
 CHANG Guiqin,DOU Zechun,et al.Effects of Baseplate Bow Type on Stress of IGBT Module[J].High Power Converter Technology,2017,(05):45.[doi:10.13889/j.issn.2095-3631.2017.01.009]
[11]王彦刚,等. 电动汽车功率模块平面封装技术[J].控制与信息技术(原大功率变流技术),2017,(05):36.[doi:10.13889/j.issn.2095-3631.2017.05.005]
 WANG Yangang,LIU Xuyu,et al. Planar Packaging Technology of Power Semiconductor Module for Electric Vehicle[J].High Power Converter Technology,2017,(05):36.[doi:10.13889/j.issn.2095-3631.2017.05.005]

备注/Memo

备注/Memo:
收稿日期:2017-08-12
作者简介:王彦刚(1974-),男,博士,高级工程师,主要从事新型功率半导体模块的设计、封装、应用及可靠性分析等工作。
基金项目:Innnovate UK 项目(102287)
更新日期/Last Update: 2017-10-09