[1]王彦刚,等. 电动汽车功率模块平面封装技术[J].控制与信息技术(原大功率变流技术),2017,(05):36-41.[doi:10.13889/j.issn.2095-3631.2017.05.005]
 WANG Yangang,LIU Xuyu,et al. Planar Packaging Technology of Power Semiconductor Module for Electric Vehicle[J].High Power Converter Technology,2017,(05):36-41.[doi:10.13889/j.issn.2095-3631.2017.05.005]
点击复制

 电动汽车功率模块平面封装技术()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2017年05期
页码:
36-41
栏目:
出版日期:
2017-10-05

文章信息/Info

Title:
 Planar Packaging Technology of Power Semiconductor Module for Electric Vehicle
文章编号:
2095-3631(2017)05-0036-06
作者:
 王彦刚 1 2 刘谞瑜3戴小平1 2 吴义伯1 2 彭勇殿1 2刘国友1 2
 (1. 新型功率半导体器件国家重点实验室,湖南株洲 412001;2. 株洲中车时代电气股份有限公司,湖南株洲 412001;3. 曼彻斯特大学电气与电子工程学院,英国 曼彻斯特 M13 9PL)
Author(s):
 WANG Yangang 1 2 LIU Xuyu 3 DAI Xiaoping 1 2 WU Yibo 1 2 PENG Yongdian 1 2 LIU Guoyou 1 2
 (1. State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou, Hunan 412001, China;2. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China;3. School of Electrical and Electronic Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom)
关键词:
 混合及纯电动汽车IGBT 模块平面封装技术功率控制单元可靠性
Keywords:
 hybrid and electric vehicle IGBT module planar packaging technology power control unit reliability
分类号:
TN303;U469.72
DOI:
10.13889/j.issn.2095-3631.2017.05.005
文献标志码:
A
摘要:
 讨论了目前电动汽车用功率模块典型的平面封装技术;介绍了汽车功率系统对功率模块的性能要求,以及汽车模块封装面临的挑战和应对措施;讨论了当前典型的采用平面封装技术的电动汽车功率模块,分析其结构和封装技术等;并展望了汽车级平面模块封装技术的下一步发展方向。
Abstract:
 In this paper, the typical planar packaging technologies of HEV/EV power semiconductor module were presented. Firstly,the functionality and performance requirements for power module by automotive power system, as well as the challenges and mitigation strategy of automotive power module packaging, were discussed. The typical state-of-the-art HEV/EV modules assembled by planar technology were reviewed and analyzed in terms of the structure and packaging technologies. Finally, the outlook of next generation key packaging technologies of planar automotive module was proposed.

参考文献/References:

 [1] Climate Change and CO2: Automakers publish a comprehensive position paper [EB/OL].(2008-05-31)[2017-08-01].http://www.oica.net/category/climate-change-and-co2.
[2] Technology Roadmap Electric and plug-in hybrid electric vehicles. International Energy Agency [EB/OL] .(2011-06-30)[2017-08-01].http://www.iea.org/publications/freepublications/publication/name.3851.en.html.
[3] NOGGIA P. Global Passenger Car Powertrain and Electric Vehicle Market: 2015 Outlook[EB/OL].(2015-06-16)[2017-08-01].http://www.ukintpress-conferences.com/uploads/SPKEX15/Day1_4_Pietro_Boggia.pdf.
[4] LIANG Z. Status and trend of automotive power packaging[C]//24th Int. Symposium on Power Semiconductor Device & ICs(ISPSD). Bruges: IEEE, 2012:325-331.
[5] KIMURA T, SAITOU R, KUBO K. et al. High-power-density Inverter Technology for Hybrid and Electric Vehicle Applications[J].Hitachi Review, 2014, 63(2):96-102.
[6] BAYERER R. Higher junction temperature in power modules – a demand from hybrid cars, a potential for the next step increase in power density for various Variable Speed Drives[C]// Int. Exhibition and Conference for Power Electronics, Intelligent Motion,Renewable Energy and Energy Management (PCIM Europe).Nuremberg, 2008.
[7] JOHN R, VERMESAN O, BAYERER R. High temperature power electronics IGBT modules for electrical and hybrid vehicles[C]//IMAPS High Temperature Electronics Network (HiTEN).Oxford,2009:199-204.
[8] MARZ M, SCHLETZ A, ECHARDT B. et al. Power electronics system integration for electric and hybrid vehicles[C]// 6th International Conference on Integrated Power Electronics Systems(CIPS). Nuremberg, 2010:227-236.
[9] NAGAUNE F, GHARA H, ADACHI S. et al. Small size and high thermal conductivity IGBT module for automotive applications[C]// PCIM Europe. Nuremberg, 2011:785-790.
[10] 吴琪乐. HEV 和EV 电力电子市场蓬勃发展2020 年前可能采用SiC 或GaN 技术[J]. 半导体信息,2011(6):32-33.
[11] WANG Y, DAI X, WU Y. et al. Integrated liquid cooling automotive IGBT module for high temperature coolant application[C]// PCIM Europe. Nuremberg, 2015:1197-1203.
[12] HIGUCHI K, KITAMURA A, ARAI H. et al. An intelligent power module with accuracy control system and direct liquid cooling for hybrid system[C]// PCIM Europe. Nuremberg, 2014:39-46.
[13] SKiM 63/93 IGBT Modules, Technical Explanations[EB/OL].(2011-07-31)[2017-08-01].http://www.semikron.com/dl/service-support.
[14]ISHIHARA M, HIYAMA K, YAMADA K. et al. New transfermold power module series for automotive power-train inverters[C]//PCIM Europe. Nuremberg, 2012:1408-1413.
[15]ISHIHARA M, MIYAMOTO N, HIYAMA K. et al. New compactpackage power modules for electric and hybrid vehicles (J1 series)[C]// PCIM Europe. Nuremberg, 2014:1093-1097.
[16]ZHONG Y, MENG J, NING P. et al. Design & Analysis of a novel IGBT package with double-sided cooling[C]// IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific). Beijing, 2014:1-6.
[17]WANG Y, LI Y, DAI X. et al. Thermal design of a dual sided cooled power semiconductor module for hybrid and electric vehicles[C]// IEEE Applied Power Electronics Conference and Exposition(APEC). Tampa, 2017:3068-3071.
[18]WANG Y, LI Y, MA Y. et al. Development of High Thermal Performance Automotive Power Module with Dual Sided Cooling Capability[C]// PCIM Europe. Nuremberg, 2017:1-5.
[19]WANG Y, LI Y, WU Y. et al. Mitigation of challenges in automotive power module packaging by dual sided cooling[C]// 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). Karlsruhe, 2016:1-8.
[20]SCHEUERMANN U. Reliability of Planar SKiN Interconnect Technology[C]// CIPS. Nuremberg, 2012:1-8.

相似文献/References:

[1]冯江华,胡 惇,罗凌波. 交直交中压大功率变频技术在冶金轧机上的应用[J].控制与信息技术(原大功率变流技术),2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
 FENG Jianghua,HU Dun,LUO Lingbo. Application of AC-DC-AC High -power Medium-voltage Converter on Metallurgical Mill[J].High Power Converter Technology,2015,(05):1.[doi:10.13889/j.issn.2095-3631.2015.05.001]
[2]张 明. 现代电力电子集成技术综述[J].控制与信息技术(原大功率变流技术),2016,(01):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
 ZHANG Ming. Overview of Modern Power Electronics Integration Technology[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.01.001]
[3]窦泽春,刘国友,陈 俊,等. 大功率压接式IGBT 器件设计与关键技术[J].控制与信息技术(原大功率变流技术),2016,(02):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
 DOU Zechun,LIU Guoyou,CHEN Jun,et al. Design and Key Technologies of High-power Press-pack IGBT Device[J].High Power Converter Technology,2016,(05):21.[doi:10.13889/j.issn.2095-3631.2016.02.005]
[4]熊 辉,袁 勇,黄 南,等. 风电功率组件电热特性分析[J].控制与信息技术(原大功率变流技术),2016,(02):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
 XIONG Hui,YUAN Yong,HUANG Nan,et al. Analysis of Electrical & Thermal Performances for Power Assembly of Wind Power[J].High Power Converter Technology,2016,(05):47.[doi:10.13889/j.issn.2095-3631.2016.02.010]
[5]邓云川,高 宏,陈建君. 基于拓展Carson 理论的单线隧道内牵引网电气参数计算研究[J].控制与信息技术(原大功率变流技术),2016,(03):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
 DENG Yunchuan,GAO Hong,CHEN Jianjun. Study of Electrical Parameter Calculation for Traction Network in Single-line Tunnel Based on the Extend of Carson Theory[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.03.100]
[6]章志兵,张志学,陈志博. 交流传动列车谐波性能优化策略[J].控制与信息技术(原大功率变流技术),2016,(04):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
 ZHANG Zhibing,ZHANG Zhixue,CHEN Zhibo. Optimization of the Harmonic in AC Drive Locomotive and EMUs[J].High Power Converter Technology,2016,(05):0.[doi:10.13889/j.issn.2095-3631.2016.04.001]
[7]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[8]彭朝阳,白 云,申华军,等. 3 300 V 高压4H-SiC 结势垒肖特基二极管器件的研制[J].控制与信息技术(原大功率变流技术),2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
 PENG Zhaoyang,BAI Yun,SHEN Huajun,et al. Development of High voltage 4H-SiC Junction Barrier Schottky Diode with 3 300 V Blocking Voltage[J].High Power Converter Technology,2016,(05):46.[doi:10.13889/j.issn.2095-3631.2016.05.200]
[9]臧晓笛,田德文. 低开关频率下永磁同步电机弱磁区电流谐波抑制[J].控制与信息技术(原大功率变流技术),2016,(06):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
 ZANG Xiaodi,TIAN Dewen. Current Harmonic Suppression of Permanent Magnet Synchronous Motor in Weak Magnetic Field under Low Switching Frequency[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.06.200]
[10]孟乐轩,赵 鑫,Mehdi Savaghebi,等. 微电网电能质量分层控制及其关键技术[J].控制与信息技术(原大功率变流技术),2017,(02):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]
 MENG Lexuan,ZHAO Xin,SAVAGHEBI Mehdi,et al. Hierarchical Control and its Key Technologies for Power Quality Enhancement in Micro-grids[J].High Power Converter Technology,2017,(05):1.[doi:10.13889/j.issn.2095-3631.2017.02.100]

备注/Memo

备注/Memo:
 收稿日期:2017-08-12
作者简介:王彦刚(1974-),男,博士,高级工程师,主要从事新型功率半导体模块的设计、封装、应用及可靠性分析等工作。
基金项目:Innnovate UK 项目(102287)
更新日期/Last Update: 2017-09-18