[1]李诚瞻,常桂钦,彭勇殿,等.一种低感封装的1 200 V 混合碳化硅功率模块[J].控制与信息技术(原大功率变流技术),2016,(05):71-74.[doi:10.13889/j.issn.2095-3631.2016.05.015]
 LI Chengzhan,CHANG Guiqin,PENG Yongdian,et al.1 200 V Hybrid SiC Power Module with Low Stray Inductance[J].High Power Converter Technology,2016,(05):71-74.[doi:10.13889/j.issn.2095-3631.2016.05.015]
点击复制

一种低感封装的1 200 V 混合碳化硅功率模块()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2016年05期
页码:
71-74
栏目:
电力电子器件
出版日期:
2016-10-05

文章信息/Info

Title:
1 200 V Hybrid SiC Power Module with Low Stray Inductance
文章编号:
2095-3631(2016)05-0071-04
作者:
李诚瞻 12 常桂钦12 彭勇殿12 方 杰12 周望君12
(1. 新型功率半导体器件国家重点实验室,湖南株洲 412001;2. 株洲中车时代电气股份有限公司,湖南株洲 412001)
Author(s):
LI Chengzhan 12 CHANG Guiqin 12 PENG Yongdian 12 FANG Jie 12 ZHOU Wangjun 12
( 1. State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou, Hunan 412001, China; 2. Zhuzhou CRRC Times Electric Co., Ltd., Zhuzhou, Hunan 412001, China )
关键词:
碳化硅功率模块寄生电感电流振荡
Keywords:
Silicon Carbide(SiC) power module stray inductance current oscillation
分类号:
TN6
DOI:
10.13889/j.issn.2095-3631.2016.05.015
文献标志码:
A
摘要:
为了实现1 200 V 混合SiC 功率模块的低感封装,文章介绍通过芯片优选和芯片优化布局设计、采用低感母排取代键合铝线的跨接等措施,将功率模块的寄生电感减小到16 nH,有效降低了模块的峰值电流和振荡时长,缓解了混合SiC 功率模块的电流振荡并降低了模块的开通损耗。将该低感封装设计的模块应用于30 kW 光伏逆变器中,光伏逆变器的转化效率可提高至97.95%。
Abstract:
In order to realize low stray inductance package of 1 200 V hybrid Silicon Carbide (SiC) power module, the measures were taken including selecting optimum chips, optimizing chip layout and replacing bridge joint with low inductance busbar, so that the stray inductance decreased to 16 nH in the power module to effectively reduce the peak current and oscillation period of the hybrid SiC module, relieve the current oscillation and decrease the turn-on loss. The transfer efficiency of 30 kW PV inverter with the low stray inductance hybrid SiC module increased to 97.95%.

参考文献/References:

[1]NING P, LEI T G, WANG F, et al. A novel high-temperature planar package for SiC multichip phase-leg power module[J]. IEEE Transactions on Power Electronics, 2010, 25(8):2059-2067.
[2]WOOD R A, SALEM T E. Evaluation of a 1200 V, 800 A all-SiC dual module[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2504-2511.
[3]CHOWDHURY S, CHOW T P. Performance Tradeoffs for Ultra- High Voltage (15 kV to 25 kV) 4H-SiC n-Channel and p-Channel IGBTs[C]//ISPSD,2016:75-78.
[4]OZPINECI B, CHINTHAVALI M S, TOLBERT L M, et al. A 55 kW three-phase inverter with Si IGBTs and SiC schottky diodes[J]. IEEE Transactions on Industry Applications, 2009, 45(1):278-285.
[5]邵云,史晶晶,李诚瞻,等. 高性能碳化硅混合功率模块研制[J]. 大功率变流技术, 2013 (2):5-7.
[6]FUJII K , NOTO Y, OSHIMA M, et al. 1-MW solar inverter with boost converter using all SiC power module[C]//17th European Conference on Power Electronics & Applications, 2015:1-10.
[7]HINATA Y, HORIO M, IKEDA Y, et al. Full SiC power module with advanced structure and its solar inverter application[C]//28th Annual IEEE on APEC, 2013:604-607.
[8]SHAN Y, TSENG K J, TONG C F, et al. A 99% efficiency SiC threephase inverter using synchronous rectification[C]//IEEE APEC, 2016 :2942-2949.
 [9]PARKER-ALLOTEY N A, ALATISE O, HAMILTON D, et al. Conduction and Switching Loss Comparison between an IGBT/ Si-PiN Diode Pair and an IGBT/SiC-Schottky Diode Pair[C] //Innovative Smart Grid Technologies (ISGT Europe), 2nd International Conference and Exhibition on IEEE PES,2011.
[10]CAO L, WANG F Z. Comparative Study of 1 00 A/1 200 V Si/SiC Hybrid IGBT Modules[J]. Reserch & Progress of SSE, 2015, 35(3):221-226.
[11]REN Y, YANG X, ZHANG F, et al. Analysis of a low-inductance packaging layout for Full-SiC power module embedding split damping[C]//Applied Power Electronics Conference and Exposition (APEC ), 2016:2102-2107.
[12]TAKAKU T, WANG H, MATSUDA N, et al. Development of 1 700 V hybrid module with Si-IGBT and SiC SBD for high efficiency AC 690 V application[C]//9th ICPE-ECCE Asia, 2015:844-849.
[13]郑姿清,周益铮. 驱动参数对IGBT 开关性能的影响[C]// 中国电源学会第二十一届学术年会,2015:249-253.
[14]Semikron. Datasheet of SKM200GB12T4SiC[S]. Germany, Semikron, 2015.

相似文献/References:

[1]吴义伯,戴小平,王彦刚,等.IGBT 功率模块封装中先进互连技术研究进展[J].控制与信息技术(原大功率变流技术),2015,(02):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
 WU Yibo,DAI Xiaoping,WANG Yangang,et al.State-of-the-art Progress of Advanced InterconnectionTechnology for IGBT Power Module Packaging[J].High Power Converter Technology,2015,(05):6.[doi:10.13889/j.issn.2095-3631.2015.02.002]
[2]王晓元,王 雄,王幸智,等.大功率模块用水冷散热器的数值模拟与试验研究[J].控制与信息技术(原大功率变流技术),2015,(02):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
 WANG Xiaoyuan,WANG Xiong,WANG Xingzhi,et al.Numerical Simulation and Experimental Study of the Water-cooled Radiator for High Power Module[J].High Power Converter Technology,2015,(05):47.[doi:10.13889/j.issn.2095-3631.2015.02.010]
[3]郑昌伟,常桂钦,李诚瞻.1 700 V/1 600 A 高性能SiC 混合IGBT功率模块的研制[J].控制与信息技术(原大功率变流技术),2015,(05):43.[doi:10.13889/j.issn.2095-3631.2015.05.009]
 ZHENG Changwei,CHANG Guiqin,LI Chengzhan.Development of 1 700 V/1 600 A High Performance SiC Hybrid IGBT Power Module[J].High Power Converter Technology,2015,(05):43.[doi:10.13889/j.issn.2095-3631.2015.05.009]
[4]刘建平,马振宇,孙保涛,等.两电平IGCT 功率模块母线杂散电感优化设计[J].控制与信息技术(原大功率变流技术),2015,(06):14.[doi:10.13889/j.issn.2095-3631.2015.06.003]
 LIU Jianping,MA Zhenyu,SUN Baotao,et al.Optimal Design of Stray Inductance of Busbar in Two-level IGCT Power Module[J].High Power Converter Technology,2015,(05):14.[doi:10.13889/j.issn.2095-3631.2015.06.003]
[5]王幸智,王 雄,姚 磊,等.水冷散热器鼓包原因及预防措施[J].控制与信息技术(原大功率变流技术),2016,(01):39.[doi:10.13889/j.issn.2095-3631.2016.01.009]
 WANG Xingzhi,WANG Xiong,YAO Lei,et al.Fault Analysis and Preventive Measures for Bulging of Water-cooled Radiator[J].High Power Converter Technology,2016,(05):39.[doi:10.13889/j.issn.2095-3631.2016.01.009]
[6]王晓元,王 雄,李彦涌,等.新型相变平板热管散热器的性能研究[J].控制与信息技术(原大功率变流技术),2016,(02):16.[doi:10.13889/j.issn.2095-3631.2016.02.004]
 WANG Xiaoyuan,WANG Xiong,LI Yanyong,et al.Performance Study of a New Phase Transition Flat Heat Pipe Radiator[J].High Power Converter Technology,2016,(05):16.[doi:10.13889/j.issn.2095-3631.2016.02.004]
[7]李保国,陈燕平,蒋云富,等.全功率风电变流器并联运行关键技术研究[J].控制与信息技术(原大功率变流技术),2016,(04):38.[doi:10.13889/j.issn.2095-3631.2016.04.008]
 LI Baoguo,CHEN Yanping,JIANG Yunfu,et al.Research on the Key Technologies of Parallel Operation for Full Power Wind Power Converter[J].High Power Converter Technology,2016,(05):38.[doi:10.13889/j.issn.2095-3631.2016.04.008]
[8]王 俊,张 渊,李宗鉴,等. SiC GTO 晶闸管技术现状及发展[J].控制与信息技术(原大功率变流技术),2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
 WANG Jun,ZHANG Yuan,LI Zongjian,et al. Technology Status and Development of SiC GTO Thyristor[J].High Power Converter Technology,2016,(05):7.[doi:10.13889/j.issn.2095-3631.2016.05.100]
[9]漆 宇,李彦涌,胡家喜,等.SiC 功率器件应用现状及发展趋势[J].控制与信息技术(原大功率变流技术),2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.05.001]
 QI Yu,LI Yanyong,HU Jiaxi,et al.Application Status of SiC Power Device and Its Development Tendency[J].High Power Converter Technology,2016,(05):1.[doi:10.13889/j.issn.2095-3631.2016.05.001]
[10]刘可安,李诚瞻,李彦涌,等.SiC 器件技术特点及其在轨道交通中的应用[J].控制与信息技术(原大功率变流技术),2016,(05):13.[doi:10.13889/j.issn.2095-3631.2016.05.003]
 LIU kean,LI Chengzhan,LI Yangyong,et al.Characteristics of SiC Device and its Application in Railway Traction[J].High Power Converter Technology,2016,(05):13.[doi:10.13889/j.issn.2095-3631.2016.05.003]
[11]戴小平,等.全烧结型SiC 功率模块封装设计与研制[J].控制与信息技术(原大功率变流技术),2016,(05):36.[doi:10.13889/j.issn.2095-3631.2016.05.007]
 DAI Xiaoping,,et al.Packaging Consideration and Development for Fully Sintered SiC Power Module[J].High Power Converter Technology,2016,(05):36.[doi:10.13889/j.issn.2095-3631.2016.05.007]

备注/Memo

备注/Memo:
收稿日期:2016-04-30
作者简介:李诚瞻(1979-),男,博士,高级工程师,长期从事功率半导体器件研究。
基金项目:国家863 计划(SS2014AA052402)
更新日期/Last Update: 2016-11-01