[1]陈喜明,等.4H-SiC 栅氧氮化工艺优化[J].控制与信息技术(原大功率变流技术),2016,(05):41-45.[doi:10.13889/j.issn.2095-3631.2016.05.008]
 CHEN Ximing,,et al.Nitridation Process Optimization of 4H-SiC Gate Oxidation[J].High Power Converter Technology,2016,(05):41-45.[doi:10.13889/j.issn.2095-3631.2016.05.008]
点击复制

4H-SiC 栅氧氮化工艺优化()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2016年05期
页码:
41-45
栏目:
电力电子器件
出版日期:
2016-10-05

文章信息/Info

Title:
Nitridation Process Optimization of 4H-SiC Gate Oxidation
文章编号:
2095-3631(2016)05-0041-05
作者:
陈喜明 1 2 3 李诚瞻1 3赵艳黎1 3邓小川2张 波2
(1. 新型功率半导体器件国家重点实验室,湖南株洲 412001; 2. 电子薄膜与集成器件国家重点实验室,四川成都 610054;3. 株洲中车时代电气股份有限公司,湖南株洲 412001)
Author(s):
CHEN Ximing 1 2 3LI Chengzhan 1 3ZHAO Yanli 1 3DENG Xiaochuan 2ZHANG Bo 2
( 1. State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou, Hunan 412001, China; 2. State Key Laboratory of Electronic Thin Films and Integrated Devices, Chengdu, Sichuan 610054,China; 3. Zhuzhou CRRC Times Electric Co.,Ltd., Zhuzhou, Hunan 412001,China )
关键词:
4H-SiCMOS 电容氮化工艺击穿电压界面态密度
Keywords:
4H-SiC MOS capacitor NO process breakdown voltage interface state density
分类号:
TN304.2+4
DOI:
10.13889/j.issn.2095-3631.2016.05.008
文献标志码:
A
摘要:
为了改善SiC MOS 电容氧化膜的质量和界面态密度,采用正交试验法考察了温度、压力、时间以及一氧化氮气流量等主要氮化工艺参数对4H-SiC MOS 电容栅氧特性的影响,发现温度是影响栅氧特性最关键因素。优选出栅氧的最佳氮化工艺条件,并找到氮化工艺条件对击穿电压和界面态密度的影响规律。
Abstract:
In order to improve the quality of SiO2 film and interface state density of SiC MOS capacitor, the impact of nitridation process parameters on the properties of gate oxide was discussed by orthogonal experimental method, which included temperature, pressure, time and NO gas flow,etc. The results demonstrated that temperature was the most critical factor that influenced the gate oxidation.The promising nitridation condition of gate oxide was optimized, and the law which the nitridation conditions effected on breakdown voltage and interface state density was found .

参考文献/References:

[1]张波,邓小川,张有润,等. 宽禁带半导体SiC 功率器件发展现状及展望[J]. 中国电子科学研究院学报,2009, 4 (2):112- 118.
[2]FUKUDA K, SUZUKI S, TANAKA T, et al. Reduction of interfacestate density in 4H-SiC n-type metal-oxide-semiconductor structures using high-temperature hydrogen annealing[J]. Applied Physics Letters, 2000, 76 (12):1585-1587.
[3]KOSUGI R, SUZUKI S, OKAMOTO M, et al. Strong dependence of the inversion mobility of 4H and 6H SiC(0001) MOSFETs on the water content in pyrogenic re-oxidation annealing[J]. IEEE Electron Device Letters, 2002, 23 (3):136-138.
[4]SHENOY J N, CHINDALORE G L, MELLOCH M R, et al. Characterization and optimization of the SiO2/SiC metal-oxide semiconductor interface[J]. Journal of Electronic Materials, 1995, 24 (4):303-309.
[5]KATO M, NANEN Y, SUDA J. Improved Characteristics of SiC MOSFETs by Post-Oxidation Annealing in Ar at High Temperature[J]. Materials Science Forum, 2011, 679-680:445- 448.
[6]OKUNO E,AMANO S. Reduction of Interface Trap Density in 4H-SiC MOS by High-Temperature Oxidation[J]. Materials Science Forum, 2002,389-393:989-992.
[7]KIMOTO T, KOSUGI H, SUDA J, et al. Design and fabrication of RESURF MOSFETs on 4H-SiC(0001), (112~0), and 6H-SiC(0001) [J]. IEEE Transactions on Electron Devices,2005, 52 (1):112-117.
[8]OKAMOTO D, YANO H, KENJI H, et al. Improved Inversion Channel Mobility in 4H-SiC MOSFETs on Si Face Utilizing Phosphorus-Doped Gate Oxide[J]. IEEE Electron Device Letters, 2010, 31 (7):710-712.
[9]OKAMOTO D, YANO H, HATAYAMA T, et al. Removal of nearinterface traps at SiO2/4H-SiC (0001) interfaces by phosphorus incorporation[J]. Applied Physics Letters, 2010, 96 (20):203508- 203508-3.
[10]CHUNG G Y, TIN C C, WILLIAMS J R, et al. Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide[J]. IEEE Electron Device Letters, 2001, 22 (4):176-178.
[11]JAMET P, DIMITRIJEV S, TANNER P. Effects of nitridation in gate oxides grown on 4H-SiC[J]. Journal of Applied P?hysics, 2001, 90(10):5058-5063.
[12]SCHOMER R, FRIEDRICHS P, PETERS D, et al. Enhanced channel mobility of 4H-SiC metal-oxide-semiconductor transistors fabricated with standard polycrystalline silicon technology and gateoxide nitridation[J]. Applied Physics Letters, 2002, 80 (22):4253- 4255. [13]FUJIHIRA K, TARUI Y, IMAIZUMI M, et al. Characteristics of 4H-SiC MOS interface annealed in N2O[J]. Solid-State Electronics, 2005, 49 (6):896-901.
[14]WANG W, BANERJEE S, CHOW T P, et al. Interface Properties of 4H-SiC/SiO2 with MOS Capacitors and FETs Annealed in O2, N2O, NO and CO2[J]. Materials Science Forum, 2004,457:1309-1312.
[15]SENZAKI J, SUZUKI T, SHIMOZATO A, et al. Significant Improvement in Reliability of Thermal Oxide on 4H-SiC (0001) Face Using Ammonia Post-Oxidation Annealing[J]. Materials Science Forum, 2010,645-648(12):685-688.
[16]SOEJIMA N, KIMURA T, ISHIKAWA T, et al. Effect of NH3 Post- Oxidation Annealing on Flatness of SiO2/SiC Interface[J]. Materials Science Forum, 2013, 740-742:723-726.
[17]DHAR S, HANEY S, CHENG L, et al. Inversion layer carrier concentration and mobility in 4H-SiC metal-oxide-semiconductor field-effect transistors[J]. Journal of Applied Physics, 2010, 108 (5): 054509-054509-5.
[18]KIMOTO T, KANZAKI Y, NOBORIO, et al. Interface Properties of Metal-Oxide-Semiconductor Structures on 4H-SiC{0001} and (11 bar{2}0) Formed by N2O Oxidation[J]. Japanese Journal of Applied Physics, 2005, 44(3):1213-1218.
[19]ROZEN J, DHAR S, ZVANUT M E,et al. Density of interface states, electron traps, and hole traps as a function of the nitrogen density in SiO2 on SiC[J]. Journal of Applied Physics, 2009, 105 (12):124506-124506-11.
[20]LENZLINGER M, SNOW E H. Fowler-nordheim tunneling into thermally grown SiO2[J]. Journal of Applied Physics, 1969,40 (1): 278-283.
[21]LAURENDEAU N M. Fast Nitrogen Dioxide Reactions: Significance during NO Decomposition and NO2 Formation[J]. Combustion Science and Technology, 1975, 11 (3-4):89-96.
[22]TERMAN L M. An investigation of surface states at a silicon/ silicon oxide interface employing metal-oxide-silicon diodes[J]. Solid-State Electronics, 1962, 5 (5):285-299.

相似文献/References:

[1]袁 昊,宋庆文,汤晓燕,等.1 200 V 4H-SiC 结势垒肖特基二极管温度特性研究[J].控制与信息技术(原大功率变流技术),2016,(05):59.[doi:10.13889/j.issn.2095-3631.2016.05.012]
 YUAN Hao,SONG Qingwen,TANG Xiaoyan,et al.Research on the Temperature Characteristics of 1 200 V 4H-SiC Junction Barrier Schottky Diode[J].High Power Converter Technology,2016,(05):59.[doi:10.13889/j.issn.2095-3631.2016.05.012]

备注/Memo

备注/Memo:
收稿日期:2016-02-20
 作者简介:陈喜明(1986-),男,工程师,主要从事SiC 功率器件研究工作。
基金项目:国家科技重大专项02 专项(2013ZX02305002)
更新日期/Last Update: 2016-11-01