[1]徐凝华,彭勇殿,罗海辉,等.热循环过程中 IGBT 模块封装退化研究[J].控制与信息技术(原大功率变流技术),2016,(04):23-29.[doi:10.13889/j.issn.2095-3631.2016.04.005]
 XU Ninghua,PENG Yongdian,LUO Haihui,et al.Study of the Package Degradation of IGBT Module during Thermal Cycling Test[J].High Power Converter Technology,2016,(04):23-29.[doi:10.13889/j.issn.2095-3631.2016.04.005]
点击复制

热循环过程中 IGBT 模块封装退化研究()
分享到:

《控制与信息技术》(原《大功率变流技术》)[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2016年04期
页码:
23-29
栏目:
电力电子器件
出版日期:
2016-08-05

文章信息/Info

Title:
Study of the Package Degradation of IGBT Module during Thermal Cycling Test
文章编号:
2095-3631(2016)04-0023-07
作者:
徐凝华 12彭勇殿12罗海辉12冯会雨12李亮星12李 寒12
(1. 新型功率半导体器件国家重点实验室,湖南株洲 412001;2. 株洲中车时代电气股份有限公司,湖南株洲 412001)
Author(s):
XU Ninghua12 PENG Yongdian12 LUO Haihui12 FENG Huiyu12 LI Liangxing12 LI Han12
(1.State Key Laboratory of Advanced Power Semiconductor Devices, Zhuzhou, Hunan 412001, China, 2. Zhuzhou CRRC Times Electric Co.,Ltd., Zhuzhou, Hunan 412001, China)
关键词:
失效分析热循环能力封装退化可靠性
Keywords:
failure analysis thermal cycling capability package degradation reliability
分类号:
TN305; TG40
DOI:
10.13889/j.issn.2095-3631.2016.04.005
文献标志码:
A
摘要:
IGBT 模块失效的原因错综复杂,封装退化是因素之一。为剔除应用工况类因素干扰,采用更严苛的热循环试验,建立模块失效和封装退化的关联,结果分析发现,封装会出现焊层分层、母排脱附及铝线脱离等退化现象,继而导致模块失效。结合材料力学理论,得出材料选型和结构设计的原则;同时分析了工艺质量水平对封装退化的影响,并从基板焊层及拱度、金属间化合物形貌、功率端子焊接、键合技术等方面提出针对性改进措施。
Abstract:
Failure mechanisms of IGBT module are complex, one of which is package degradation. To eliminate the interference of application condition and other effects, the correlation between module failure and package degradation was built via severe thermal cycling test. Results show that the degradation will be encountered after packaging, such as solder layer delamination, loose busbars and lift-off bonding wires, which may cause module failure. Principle of material selection and structure design was get by studying the theory of material mechanics. The influence of packaging process was discussed and the optimized methods were proposed aiming to solder layer and bow of baseplate, IMC, terminal soldering, wire bonding, etc.

参考文献/References:

[1] 徐凝华,吴义伯,刘国友,等 . 混合动力/ 电动汽车用IGBT 功率模块的最新封装技术[J]. 大功率变流技术,2013(1):1-6.
[2]MANSON S S. Thermal stress and low cycle fatigue [M]. New York: McGraw-Hill, 1966.
[3]HELD M, JACOB P, NICOLETTI P. Fast Power Cycling Test for IGBT Modules in Traction Application[C]// Proceedings from the International Conference in Power Electronics and Drive Systems, 1997.
[4]KOVACEVIC I F, DROFENIK U. New Physical Model for Lifetime Estimation of Power Modules[C]//International Power Electronics Conference (IPEC). Sapporo, 2010.
[5]BAYERER R, HERRMANN T. Model of Power Cycling Lifetime of IGBT Modules - Various Factors Influencing Lifetime[C]// 5th International Conference of Integrated Power Systems (CIPS). Nuremberg,2008.
[6]WU Y B, LIU G Y, XU N H, et al. Thermal Resistance Analysis and Simulation of IGBT Module with High Power Density[C]// Applied Mechanics and Materials, 2013.
[7]ULRICH R K, BROWN W D. Advanced Electronic Packaging (2nd Edition)[M]. Hoboken: Wiley, 2006.
[8]WEIBULL W. A statistical distribution function of wide applicability [J]. J Appl Mech Trans ASME, 1951, 18(3): 293-297.
[9]SIEPE D, BAYERER R, ROTH R. The future of wire bonding is Wire bonding![C]//CIPS, 2010.
[10]MATSUNAGA T,UEGAI Y. Thermal Fatigue Life Evaluation of Aluminum Wire Bonds[J]. Electronics System Integration Technology Conference, 2006(2): 726-731.
[11]TU King-Ning. Solder Joint Technology: Materials, Properties, and Reliability[M]. New York: Springer Science + Business Media , 2007.
[12]GUTH K, OESCHLER N, B?ER L, et al. New assembly and interconnect technologies for power modules[C]//CIPS, 2012.
[13] AVRON A. Analysis of innovative technologies and packaging trends for power modules[C]//CIPS, 2012.

相似文献/References:

[1]谭邵波,唐冈林,黄爱萍.共因失效分析在轨道交通信号系统安全性计算中的应用[J].控制与信息技术(原大功率变流技术),2018,(02):69.[doi:10.13889/j.issn.2096-5427.2018.02.016]
 TAN Shaobo,TANG Ganglin,HUANG Aiping.Analysis of Common Cause Failure in the Safety Calculation for Railway Signaling System[J].High Power Converter Technology,2018,(04):69.[doi:10.13889/j.issn.2096-5427.2018.02.016]

备注/Memo

备注/Memo:
收稿日期:2016-06-28
作者简介:徐凝华(1984-),男,工程师,主要从事高功率密度封装材料和封装工艺开发、模块失效分析等工作。
更新日期/Last Update: 2016-08-31