[1]朱辉,王汉青.变流器水冷管道内汽蚀条件的计算流体动力学分析[J].控制与信息技术,2014,(04):10-14.[doi:10.13889/j.issn.2095-3631.2014.04.003]
 ZHU Hui,WANG Han-qing.CFD Analysis on the Occurrence of Cavitations in the Water-cooling Pipes of Converter[J].High Power Converter Technology,2014,(04):10-14.[doi:10.13889/j.issn.2095-3631.2014.04.003]
点击复制

变流器水冷管道内汽蚀条件的计算流体动力学分析()
分享到:

《控制与信息技术》[ISSN:2095-3631/CN:43-1486/U]

卷:
期数:
2014年04期
页码:
10-14
栏目:
变流与控制
出版日期:
2014-08-05

文章信息/Info

Title:
CFD Analysis on the Occurrence of Cavitations in the Water-cooling Pipes of Converter
文章编号:
2095-3631(2014)04-0010-05
作者:
朱辉1王汉青2
1 .中南大学
2 .湖南工业大学
Author(s):
ZHU Hui1WANG Han-qing2
1. School of Energy Science and Engineering, Central South University,2. College of Civil Engineering, Hunan University of Technology,
关键词:
水冷系统汽蚀变流器计算流体动力学
Keywords:
water-cooling system cavitation converter CFD(computational fluid dynamics)
分类号:
TM46;O354
DOI:
10.13889/j.issn.2095-3631.2014.04.003
文献标志码:
A
摘要:
从流体动力学理论出发,对汽蚀现象的产生机理等进行了分析。在此基础上,以变流器水冷系统管道中存在变截面的90°弯头段为例,建立三维模型,采用Realizable k- 湍流模型并借助SIMPLE算法对管件内的流体运动进行CFD(计算流体动力学)数值模拟。通过对模拟结果进行分析发现:当截面平均速度保持在2.38 m/s以下时,管道内部理论上不会形成汽蚀;当速度高于3.1 m/s时,流体的压力将低于空气析出压力,溶解在流体中的气体便会迅速析出,使管道系统中存在极大的汽蚀隐患。
Abstract:
Based on the mechanism analysis of cavitations in terms of the fluid dynamics, a 3-dimensional model of 90° bend tube was established as an example of 90° bend of cooling system for converter. CFD(computational fluid dynamics) numerical simulation of the flow in bend was conducted using the Realizable k- turbulence model and SIMPLE algorithm. The simulation results show that cavitations will not happen when the fluid in bend tube has an average inlet velocity of 2.38 m/s. However, when the velocity is higher than 3.1m/s, the pressure of fluid is lower than the value under which the air in fluid will emit, thus the air emits rapidly and the probability of cavitations in the pipe system increases greatly.

参考文献/References:

[1] Caupin F, Herbert E. Cavitation in water: a review[J]. Comptes Rendus Physique, 2006, 7(9) :1000-1017.
[2] Kumar P, Saini R P. Study of cavitation in hydro turbines:A review[J]. Renewable and Sustainable Energy Reviews, 2010, 14(1) :374-383.
[3] 刘晓红,于兰英,刘桓龙. 液压轴向柱塞泵配流盘气蚀机理[J]. 机械工程学报,2008,44(11) :203-208.
[4] 张黎华. 在设计阶段中解决离心泵气蚀问题的可行性探析[J]. 石油化工设计,2005,22(01) :34-36.
[5] 曹进. 承德滦河电厂供热输水管网水力学计算研究[D]. 北京:北京工业大学,2005 .
[6] 刘竹溪,刘光临. 泵站水锤及其防护[M]. 北京:水利电力出版社,1985.
[7] Sun Z,Kang X Q, Wang X H. Experimental system of cavitation erosion with water-jet[J]. Materials & Design, 2005, 26(1) : 59-63.
[8] Srinivasan V, Salazar A J, Saito K. Numerical simulation of cavitation dynamics using a cavitation-induced-momentumdefect (CIMD) correction approach[J]. Applied Mathematical Modeling, 2009,33(3) :1529-1559.
[9] Cohen P. The ASME Handbook on Water Technology for Thermal Power Systems[M]. New York:ASME, 1989.
[10] 张兆顺,崔桂香. 流体力学[M]. 北京:清华大学出版社, 1999.
[11] 王学芳. 工业管道中的水锤[M]. 北京:科学出版社,1995.
[12] 湛含辉,朱辉. 螺旋管内迪恩涡运动的数值模拟[J]. 热能动力工程,2011,26(1) :41-47.
[1 3] 任泽霈,蔡睿贤. 热工手册[M]. 北京:机械工业出版社, 2002.

备注/Memo

备注/Memo:
收稿日期:2014- 03- 05
作者简介:朱辉(1983 - ),博士研究生,主要从事工程热物理方面的研究工作。
基金项目:国家自然科学基金项目(5 1 2 7 6 0 5 7);湖南省研究生科研创新项目(CX2014B065)
更新日期/Last Update: 2016-03-23